Autonomous Agents and Multi-Agent Systems

, Volume 20, Issue 2, pp 198–233 | Cite as

Mobile agent systems and cellular automata

Article

Abstract

The purpose of this article (based on an earlier draft available as technical report: Gruner S, Mobile agent systems and cellular automata. LaBRI Research Reports, 2006) is to make a step towards uniting the paradigms of cellular automata and mobile agents, thus consequentially the fields of artificial life and multi agent systems, which have significant overlap but are still largely perceived as separate fields. In Chalopin et al. (Mobile agent algorithms versus message passing algorithms, pp. 187–201, 2006) the equivalent power of classical distributed algorithms and mobile agent algorithms was demonstrated for asynchronous systems with interleaving semantics under some further constraints and assumptions. Similar results are still being sought about mobile agent systems and distributed systems under other constraints and assumptions in search of a comprehensive general theory of these topics. This article investigates the relationship between mobile agent systems and a generalized form of cellular automata. With a particular notion of local equivalence, a cellular automaton can be translated into a mobile agent system and vice versa. The article shows that if the underlying network graph is finite, then the degree of pseudo-synchrony of the agent system simulating the cellular automaton can be made arbitrarily high, even with an only small number of active agents. As a possible consequence of this theoretical result, the Internet might be used in the future to implement large cellular automata of almost arbitrary topology.

Keywords

Generalised cellular automata Mobile agent systems Simulation Emulation Equivalence Local synchrony Labels Colours Update rules Graph Network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbas, S., Mosbah, M., & Zemmari, A. (2006). Distributed computation of a spanning tree in a dynamic graph by mobile agents. In IEEE international conference on engineering of intelligent systems, pp. 425–430.Google Scholar
  2. 2.
    Abbas, S., Mosbah, M., & Zemmari, A. (2007). Merging time of random mobile agents. In International conference on dynamics in logistics (LDIC’07), pp. 179–190.Google Scholar
  3. 3.
    Abbas, S., Mosbah, M., & Zemmari, A. (2008). A probabilistic model for distributed merging of mobile agents. In 2nd international workshop on verification and evaluation of computer and communication systems (VeCOS’08).Google Scholar
  4. 4.
    Bandini, S., Manzoni, S., & Vizzari, G. (2004). Situated cellular agents—a model to simulate crowding dynamics. IEICE ransactions on Information and systems, E87-D(3), 669–676.Google Scholar
  5. 5.
    Batty, M., & Jiang, B. (1999). Multi-agent simulation: New approaches to exploring space-time dynamics in GIS. Technical report: CASA Centre for Advanced Spatial Analysis. http://eprints.ucl.ac.uk/archive/00000268/01/multiagent.pdf
  6. 6.
    Bays C. (1994) Cellular automata in the triangular tesselation. Journal of Complex Systems 8: 127–150MATHMathSciNetGoogle Scholar
  7. 7.
    Chalopin, J., Godard, E., Metivier, Y., & Ossami, R. (2006). Mobile agent algorithms versus message passing algorithms. In 10th international conference on principles of distributed systems (OPODIS’06), pp. 187–201.Google Scholar
  8. 8.
    Cooper, P. (2005). A Cellular automata simulation environment. BSc project thesis (supervised by S. Gruner), University of Wales (GB).Google Scholar
  9. 9.
    Culik, K., & Albert, J. (1987). A simple universal cellular automaton and its one-way and totalistic version. Journal of Complex Systems, 1(1).Google Scholar
  10. 10.
    Culik, K., & Yu, S. (1988). Undecidability of CA classification schemes. Journal of Complex Systems, 2(2).Google Scholar
  11. 11.
    Derbel, B., Mosbah, M., & Gruner, S. (2008). Mobile agents implementing local computations in graphs. Lecture notes in computer science (Vol. 5214, pp. 99–114) Springer-Verlag.Google Scholar
  12. 12.
    Dewdney A.K. (1984) Computer recreations—in the game called ‘Core War’ hostile programs engage in a Battle of Bits. Scientific American 250(5): 14–22CrossRefGoogle Scholar
  13. 13.
    Dijkstra, J., Timmermans, H. J. P., & Jessurun, A. J. (2000). A multi-agent cellular automata system for visualising simulated pedestrian activity. In S. Bandini & T. Worsch (Eds.), Theoretical and practical issues on cellular automata—proceedings of the 4th international conference on cellular automata for research and industry (pp. 29–36). Springer-Verlag.Google Scholar
  14. 14.
    Ehrig, H., Kreowski, H. J., Montanari, U., & Rosenberg, G. (Eds.). (1999). Handbook of graph grammars and computing by graph transformation (Vol. III: Concurrency, Parallelism and Distribution). World Scientific.Google Scholar
  15. 15.
    Gardner, M. (1970). Mathematical games—the fantastic combinations of John Conway’s new solitaire game ‘Life’ (Vol. 223, pp. 120–123). Scientific American.Google Scholar
  16. 16.
    Giraldi, G. A., da Costa, L. C., Xavier, A. V., & Rodrigues, P. S. (2005). Methods for analytical understanding of agent-based modeling of complex systems. Technical Report in Computing Research Repository (CoRR), item: abs/cs/0508002. http://arxiv.org/corr/
  17. 17.
    Gottlob, G., Frühwirth, T., & Horn, W. (1990). Expertensysteme. Springer-Verlag.Google Scholar
  18. 18.
    Gruner, S. (2006). Mobile agent systems and cellular automata. LaBRI Research Reports, No. 1400-06, Université Bordeaux I. http://www.labri.fr/perso/lepine/Rapports_internes/RR-140006.ps.gz
  19. 19.
    Hamagami, T., & Hirata, H. (2003). Method of crowd simulation by using multi-agent on cellular automata. In IAT: Proceedings of the IEEE/WIC international conference on intelligent agent technology (p. 46). IEEE Computer Society Press.Google Scholar
  20. 20.
    Klasing R., Markou E., Pelc A. (2008) Gathering asynchronous oblivious mobile robots in a ring. Theoretical Computer Science 390(1): 27–39MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Kung H. (1982) Why systolic architectures?. IEEE Computer 15(1): 37–46Google Scholar
  22. 22.
    Lamport L. (1978) Time, clocks, and the ordering of events in distributed systems. Communications of the ACM 21: 558–565MATHCrossRefGoogle Scholar
  23. 23.
    Langton, C. (1987). Virtual state machines in cellular automata. Journal of Complex Systems, 1(2).Google Scholar
  24. 24.
    Margolus, N. H. (2002). Crystalline computation. In A. J. G. Hey (Ed.), Feynman and computation—exploring the limits of computers (Chapt. 18, pp. 267–308.). Perseus/Westview Press.Google Scholar
  25. 25.
    Margolus, N. H., & Toffoli, T. (1987). Cellular automata machines. Journal of Complex Systems, 1(5).Google Scholar
  26. 26.
    Metivier, Y., Mosbah, M., Ossamy, R., & Sellami, A. (2004). Synchronizers for local computations. Lecture notes in computer science (Vol. 3256, pp. 271–286). Springer-Verlag.Google Scholar
  27. 27.
    Raynal, M., & Singhal, M. (1996, February). Capturing causality in distributed systems. In IEEE Computer, pp. 49–56.Google Scholar
  28. 28.
    Robinson, R., Cook, D., & Tanimoto, S. (1995). Programming agents with visual rules. In Proceedings of the 11th international IEEE symposium on visual languages (pp. 13–20). IEEE Computer Society Press.Google Scholar
  29. 29.
    Tanenbaum, A. S. (1992). Modern operating systems. Prentice Hall.Google Scholar
  30. 30.
    Tanenbaum, A. S., van Steen, M. (2007). Distributed systems—principles and paradigms (2nd ed). Pearson/Prentice Hall.Google Scholar
  31. 31.
    Tel, G. (2000). Introduction to distributed algorithms. (2nd ed). Cambridge University Press.Google Scholar
  32. 32.
    Timmermans, H. (1999). Towards a multi-agent model for visualizing simulated user behavior to support the assessment of design performance. Technical Report: Technische Universiteit Eindhoven (NL), http://www.ds.arch.tue.nl/research/publications/Jan/Acadia99.pdf
  33. 33.
    Toffoli, T. (2002). Action, or the fungibility of computation. In A. J. G. Hey (Ed.), Feynman and computation—exploring the limits of computers (Chapt. 21, pp. 349–392). Perseus/Westview Press.Google Scholar
  34. 34.
    Wolfram, S. (2002). Emulating cellular automata with other systems. In S. Wolfram (Ed.). A new kind of science (Sect. 11.6, pp. 664–673). Wolfram Media.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations