Advertisement

Autonomous Agents and Multi-Agent Systems

, Volume 19, Issue 2, pp 210–243 | Cite as

Rapid exploration of unknown areas through dynamic deployment of mobile and stationary sensor nodes

  • Ettore FerrantiEmail author
  • Niki Trigoni
  • Mark Levene
Article

Abstract

When an emergency occurs within a building, it may be initially safer to send autonomous mobile nodes, instead of human responders, to explore the area and identify hazards and victims. Exploring all the area in the minimum amount of time and reporting back interesting findings to the human personnel outside the building is an essential part of rescue operations. Our assumptions are that the area map is unknown, there is no existing network infrastructure, long-range wireless communication is unreliable and nodes are not location-aware. We take into account these limitations, and propose an architecture consisting of both mobile nodes (robots, called agents) and stationary nodes (inexpensive smart devices, called tags). As agents enter the emergency area, they sprinkle tags within the space to label the environment with states. By reading and updating the state of the local tags, agents are able to coordinate indirectly with each other, without relying on direct agent-to-agent communication. In addition, tags wirelessly exchange local information with nearby tags to further assist agents in their exploration task. Our simulation results show that the proposed algorithm, which exploits both tag-to-tag and agent-to-tag communication, outperforms previous algorithms that rely only on agent-to-tag communication.

Keywords

Autonomous agents Area exploration Sensor networks Collaboration Tags 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batalin, M. A., & Sukhatme, G. S. (2005). The analysis of an efficient algorithm for robot coverage and exploration based on sensor network deployment. In ICRA05: Proceedings of 2005 IEEE International Conference on Robotics and Automation, April (pp. 3478–3485). IEEE Press.Google Scholar
  2. 2.
    Batalin, M. A., & Sukhatme, G. S. (2003). Efcient exploration without localization. In ICRA03: Proceedings of 2003 IEEE International Conference on Robotics and Automation, May (pp. 2714–2719). IEEE Press.Google Scholar
  3. 3.
    Batalin, M., Sukhatme, G., & Hattig, M. (2004). Mobile robot navigation using a sensor network. In ICRA04: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, April (pp. 636–642). IEEE Press.Google Scholar
  4. 4.
    Batalin, M. A., & Sukhatme, G. S. (2003). Coverage, exploration and deployment by a mobile robot and communication network. In Proceedings of the International Workshop on Information Processing in Sensor Networks, April (pp. 376–391). ACM.Google Scholar
  5. 5.
    O’Hara, K. J., & Balch, T. R. (2004). Distributed path planning for robots in dynamic environments using a pervasive embedded network. In AAMAS04: Proceedings of 2004 International Joint Conference on Autonomous Agents and Multiagent Systems, August, ACM.Google Scholar
  6. 6.
    O’Hara, K. J., & Balch, T. R. (2004). Pervasive embedded networks for supporting multi-robot activities. In Proceedings of the AAAI-04 Workshop on Sensor Networks, July, AAAI Press.Google Scholar
  7. 7.
    O’Hara, K. J., Bigio, V., Dodson, E. R., Irani, A. J., Walker, D. B., & Balch, T. R. (2005). Physical path planning using the GNATs. In ICRA05: Proceedings of 2005 IEEE International Conference on Robotics and Automation, April (pp. 709–714). IEEE Press.Google Scholar
  8. 8.
    O’Hara, K. J., Bigio, V., Whitt, S., Walker, D., & Balch, T. R. (2006). Evaluation of a large scale pervasive embedded network for robot path planning. In ICRA06: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, May (pp. 2072–2077). IEEE Press.Google Scholar
  9. 9.
    Wagner I.A., Altshuler Y., Yanovski V., Bruckstein A.M. (2008) Cooperative cleaners: A study in ant robotics. International Journal of Robotics Research 27: 127–151CrossRefGoogle Scholar
  10. 10.
    Svennebring J., Koenig S. (2004) Building terrain-covering ant robots: A feasibility study. Autonomous Robots 16: 313–332CrossRefGoogle Scholar
  11. 11.
    Rekleitis, I., Dudeck, G., & Milios, E. (1997). Multi-robot exploration of an unknown environment, efficiently reducing the odometry error. In IJCAI97: Proceedings of the 1997 International Joint Conference on Artificial Intelligence, (pp. 1340–1345), Morgan Kaufmann, August.Google Scholar
  12. 12.
    Icking, C., Kamphans, T., Klein, R., & Langetepe, E. (2005). Exploring simple grid polygons. In COCOON05: Proceedings of the 2005 Annual International Conference of Computing and Combinatorics, August (pp. 524–533). Springer: Berlin, Heidelberg.Google Scholar
  13. 13.
    Hazon, N., Mieli, F., & Kaminka, G. A. (2006). Towards robust on-line multi-robot coverage. In ICRA06: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, May (pp. 1710–1715). IEEE Press.Google Scholar
  14. 14.
    Ferranti, E., Trigoni, N., & Levene, M. (2007). Brick & Mortar: An on-line multi-agent exploration algorithm. In ICRA07: Proceedings of the 2007 IEEE International Conference on Robotics and Automation, April (pp. 761–767). IEEE Press.Google Scholar
  15. 15.
    Koenig, S., & Liu, Y. (2001). Terrain coverage with ant robots: A simulation study. In AGENTS01: Proceedings of the 2001 ACM International Conference on Autonomous Agents, May (pp. 600–607). ACM Press.Google Scholar
  16. 16.
    Choset H. (2001) Coverage for robotics—a survey of recent results. Annals of Mathematics and Artificial Intelligence 31: 113–126CrossRefGoogle Scholar
  17. 17.
    Kotz, D., Newport, C., Gray, R. S., Liu, J., Yuan, Y., & Elliott, C. (2004). Experimental evaluation of wireless simulation assumptions. Tech. Rep. Technical Report TR2004-507, Dartmouth College Computer Science, June.Google Scholar
  18. 18.
    Aguayo, D., Bricket, J., Biswas, S., Judd, G., & Morris, R. (2004). Link-level measurements from an 802.11b mesh network. In SIGCOMM04: Proceedings of the 2004 ACM Conference of the Special Interest Group on Data Communication, August (pp. 121–132). ACM Press.Google Scholar
  19. 19.
    Park, J., Park, S., Kim, D., Cho, P., & Cho, K. (2003). Experiments on radio interference between wireless LAN and other radio devices on a 2.4 GHz ISM band. In VTC03: Proceedings of the 2003 IEEE Semiannual Vehicular Technology Conference, April (pp. 1798–1801). IEEE Press.Google Scholar
  20. 20.
    Kotz, D., Newport, C., & E. C. (2003). The mistaken axioms of wireless-network research. Tech. Rep. Technical Report TR2003-467, Dartmouth College Computer Science, July.Google Scholar
  21. 21.
    Zhao, J., & Govindan, R. (2003). Understanding packet delivery performance in dense wireless sensor networks. In SenSys03: Proceedings of the 2003 ACM Conference on Embedded Networked Sensor Systems, November (pp. 1–13). ACM Press.Google Scholar
  22. 22.
    Cerpa, A., Busek, N., & Estrin, D. (2003). SCALE: A tool for simple connectivity assessment in lossy environments. Tech. Rep. Technical Report CENS-21, UCLA, September.Google Scholar
  23. 23.
    Ganesan, D., Krishnamachari, B., Woo, A., Culler, D., Estrin, D., & Wicker, S. (2002). Complex behavior at scale: An experimental study of low-power wireless sensor networks. Tech. Rep. Technical Report CSD-TR 02-0013, UCLA, February.Google Scholar
  24. 24.
    Hähnel, D., Burgard, W., Fox, D., Fishkin, K., & Philipose, M. (2004). Mapping and localization with RFID technology. In ICRA04: Proceedings of 2004 IEEE International Conference on Robotics and Automation, April (pp. 1015–1020). IEEE Press.Google Scholar
  25. 25.
    Kleiner, A., Prediger, J., & Nebel, B. (2006). RFID technology-based exploration and SLAM for search and rescue. In IROS06: Proceedings of the 20062006 IEEE/RSJ International Conference on Intelligent Robots and Systems, (pp. 4054–4059). IEEE Press, October.Google Scholar
  26. 26.
    Burgard W., Moors M., Stachniss C., Schneider F. (2005) Coordinated multi-robot exploration. IEEE Transactions on Robotics 21: 376–378CrossRefGoogle Scholar
  27. 27.
    Yanovski V., Wagner I.A., Bruckstein A.M. (2003) A distributed ant algorithm for efficiently patrolling a network. Algorithmica 37: 165–186zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Wagner I.A., Bruckstein A.M. (2001) From Ants to A(ge)nts: A special issue on Ant-robotics. Annals of Mathematics and Artificial Intelligence 31: 1–5CrossRefGoogle Scholar
  29. 29.
    Wagner I.A., Lindenbaum M., Bruckstein A.M. (2000) MAC vs. PC—determinism and randomness as complementary approaches to robotic exploration of continuous unknown domains. International Journal of Robotics Research 19: 12–31CrossRefGoogle Scholar
  30. 30.
    Albers, S., Kursawe, K., & Schuierer, S. (1999). Exploring unknown environments with obstacles. In Proceedings of the tenth ACM-SIAM Symposium on Discrete Algorithms, January (pp. 842–843), ACM Press.Google Scholar
  31. 31.
    Batalin M.A., Sukhatme G.S. (2007) The design and analysis of an efficient local algorithm for coverage and exploration. IEEE Transactions on Robotics 23: 661–675CrossRefGoogle Scholar
  32. 32.
    Li, Q., De Rosa, M., & Rus, D. (2003). Distributed algorithms for guiding navigation across a sensor network. In Mobicom 2003: Proceedings of 2003 ACM International Conference on Mobile Computing and Networking, September (pp. 313–325). ACM.Google Scholar
  33. 33.
    Li Q., Rus D. (2005) Navigation protocols in sensor networks. ACM Transactions on Sensor Networks 1: 3–35CrossRefGoogle Scholar
  34. 34.
    Kong, C. S., Peng, N. A., & Rekleitis, I. (2006). Distributed coverage with multi-robot system. In ICRA06: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, May (pp. 2423–2429). IEEE Press.Google Scholar
  35. 35.
    Choset, H., & Pignon, P. (1997). Coverage path planning: The boustrophedon cellular decomposition. In FSN97: Proceedings of 1997 International Conference on Field and Service Robotics, December.Google Scholar
  36. 36.
    Yamauchi, B. (1998). Frontier-based exploration using multiple robots. In AGENTS98: Proceedings of the 1998 ACM International Conference on Autonomous Agents, May (pp. 47–53). ACM Press.Google Scholar
  37. 37.
    Howard A., Parker L.E., Sukhatme G.S. (2006) Experiments with a large heterogeneous mobile robot team: Exploration, mapping, deployment and detection. The International Journal of Robotics Research 25: 431–447CrossRefGoogle Scholar
  38. 38.
    Burgard, W., Moors, M., Fox, D., Simmons, R., & Thrun, S. (2000). Collaborative multi-robot exploration. In ICRA00: Proceedings of the 2000 IEEE International Conference on Robotics and Automation, April (pp. 476–481). IEEE Press.Google Scholar
  39. 39.
    Batalin, M. A., & Sukhatme, S. G. (2002). Spreading out: A local approach to multi-robot coverage. In DARS02: Proceedings of the 6th International Symposium on Distributed Autonomous Robotics Systems, June (pp. 373–382).Google Scholar
  40. 40.
    Payton D., Daily M., Estowski R., Howard M., Lee C. (2001) Pheromone robotics. Autonomous Robots 11: 319–324zbMATHCrossRefGoogle Scholar
  41. 41.
    Zheng, X., Jain, S., Koenig, S., & Kempe, D., (2005). Multi-robot forest coverage. In IROS05: Proceedings of the 2005 IEEE International Conference of Intelligent Robots and Systems, (pp. 3852–3857). IEEE Press, August.Google Scholar
  42. 42.
    Agmon, N., Hazon, N., & Kaminka, G. A. (2006). Constructing spanning trees for efficient multi-robot coverage. In ICRA06: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, May (pp. 1698–1703). IEEE Press.Google Scholar
  43. 43.
    Hazon, N., & Kaminka, G. A. (2005). Redundancy, efficiency, and robustness in multi-robot coverage. In ICRA05: Proceedings of 2005 IEEE International Conference on Robotics and Automation, April (pp. 735–741). IEEE Press.Google Scholar
  44. 44.
    Durrant-Whyte H., Bailey T. (2006) Simultaneous localization and mapping: Part I. Robotics and Automation Magazine IEEE 13: 99–110CrossRefGoogle Scholar
  45. 45.
    Bailey T., Durrant-Whyte H. (2006) Simultaneous localization and mapping: Part II. Robotics and Automation Magazine IEEE 13: 108–117CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.University of OxfordOxfordUK
  2. 2.Birkbeck College, University of LondonLondonUK

Personalised recommendations