Goals in conflict: semantic foundations of goals in agent programming

  • M. Birna van Riemsdijk
  • Mehdi Dastani
  • John-Jules Ch. Meyer
Open Access
Article

Abstract

This paper addresses the notion of (declarative) goals as used in agent programming. Goals describe desirable states, and semantics of these goals in an agent programming context can be defined in various ways. We focus in this paper on the representation of conflicting goals. In particular, we define two semantics for goals, one for unconditional goals and one for conditional goals. The first is based on propositional logic, and the latter is based on default logic. We establish relations between and properties of these semantics.

Keywords

Agent programming languages Goals Logic 

References

  1. 1.
    Antoniou G. (1997) Nonmonotonic reasoning Artificial intelligence. The MIT Press, Cambridge, MAGoogle Scholar
  2. 2.
    Besnard, P., & Hunter, A. (1995). Quasi-classical logic: Non-trivializable classical reasoning from inconsistent information. In Symbolic and quantitative approaches to reasoning and uncertainty (pp. 44–51). Berlin: Springer.Google Scholar
  3. 3.
    Bordini R.H., Dastani M., Dix J., ElFallah Seghrouchni A. (2005) Multi-agent programming: Languages, platforms and applications. Springer, BerlinMATHGoogle Scholar
  4. 4.
    Braubach, L., Pokahr, A., Moldt, D., & Lamersdorf, W. (2005). Goal representation for BDI agent systems. In Programming multiagent systems, second international workshop (ProMAS’04), volume 3346 of LNAI (pp. 44–65). Berlin: Springer.Google Scholar
  5. 5.
    Brewka, G. (1991). Nonmonotonic reasoning: logical foundations of commonsense. Cambridge Tracts in Theoretical Computer Science. Cambridge: Cambridge University Press.Google Scholar
  6. 6.
    Brewka, G. (1994). Adding priorities and specificity to default logic. In Logics in artificial intelligence (JELIA’94), volume 838 of LNCS (pp. 247–260). Berlin: Springer-Verlag.Google Scholar
  7. 7.
    Brewka G., Dix J., Konolige K. (1997) Nonmonotonic reasoning: An overview. CSLI Publications, StanfordMATHGoogle Scholar
  8. 8.
    Brewka, G., & Eiter, T. (2000). Prioritizing default logic. In Intellectics and computational logic (pp. 27–45). Devender: Kluwer.Google Scholar
  9. 9.
    Broersen J., Dastani M., Hulstijn J., van der Torre L. (2002) Goal generation in the BOID architecture. Cognitive Science Quarterly 2(3–4): 428–447Google Scholar
  10. 10.
    Chellas B.F. (1980) Modal logic: An introduction. Cambridge University Press, CambridgeMATHGoogle Scholar
  11. 11.
    Cohen P.R., Levesque H.J. (1990) Intention is choice with commitment. Artificial Intelligence 42: 213–261MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dastani, M., Governatori, G., Rotolo, A., & van der Torre, L. (2005). Programming cognitive agents in defeasible logic. In Proceedings of Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’05), volume 3835 of LNAI (pp. 621–637). Berlin: Springer-Verlag.Google Scholar
  13. 13.
    Dastani, M., & van der Torre, L. (2004). Programming BOID-Plan agents: Deliberating about conflicts among defeasible mental attitudes and plans. In Proceedings of the 3rd Conference on Autonomous Agents and Multi-agent Systems (AAMAS’04) (pp. 706–713). New York, USA.Google Scholar
  14. 14.
    Dastani, M., van Riemsdijk, M. B., Dignum, F., & Meyer, J.-J. Ch. (2004). A programming language for cognitive agents: Goal directed 3APL. In Programming multiagent systems, first international workshop (ProMAS’03), volume 3067 of LNAI (pp. 111–130). Berlin: Springer.Google Scholar
  15. 15.
    de Boer F., Hindriks K., van der Hoek W., Meyer J.-J. (2007) A Verification framework for agent programming with declarative goals. Journal of Applied Logic 5: 277–302MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Delgrande, J. P., & Schaub, T. (1997). Compiling reasoning with and about preferences into default logic. In Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI’97) (pp. 168–175).Google Scholar
  17. 17.
    Duff, S., Harland, J., & Thangarajah, J. (2006). On proactivity and maintenance goals. In Proceedings of the 5th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’06) (pp. 1033–1040), Hakodate.Google Scholar
  18. 18.
    Emerson, E. A., & Srinivasan, J. (1989). Branching time temporal logic. In Linear time, branching time and partial order in logics and models for concurrency, school/workshop (pp. 123–172). London, UK: Springer-Verlag.Google Scholar
  19. 19.
    Fagin R., Halpern J. (1988) Belief, awareness and limited reasoning. Artificial Intelligence 34: 39–76CrossRefMathSciNetGoogle Scholar
  20. 20.
    Gabbay D., Hunter A. (1991) Making inconsistency respectable: A logical framework for inconsistency in reasoning. In: Jorrand P., Kelemen J. (eds) Proceedings of Fundamentals of Artificial Intelligence Research (FAIR’91). Springer-Verlag, Berlin, pp 19–32Google Scholar
  21. 21.
    Gelfond, M., & Lifschitz, V. (1990). Logic programs with classical negation. In Logic programming (pp. 579–597). Cambridge: MIT Press.Google Scholar
  22. 22.
    Gelfond M., Lifschitz V. (1991) Classical negation in logic programs and disjunctive databases. New Generation Computing 9(3/4): 365–386CrossRefGoogle Scholar
  23. 23.
    Governatori G., Rotolo A. (2004) Defeasible logic: Agency, intention and obligation. In: Lomuscio A., Nute D. (eds) Deontic logic in computer science (DEON’04), volume 3065 of LNAI. Springer, Berlin, pp 114–128Google Scholar
  24. 24.
    Hansson B. (1969) An analysis of some deontic logics. In Nous 3: 373–398MathSciNetGoogle Scholar
  25. 25.
    Harrenstein, B. P. (2004). Logic in conflict: Logical explorations in strategic equilibrium. PhD thesis.Google Scholar
  26. 26.
    Hindriks, K., & Meyer, J.-J. Ch. (2006). Agent logics as program logics: Grounding KARO. In Proceedings of the 29th German Conference on Artificial Intelligence (KI’06).Google Scholar
  27. 27.
    Hindriks K.V., de Boer F.S., van der Hoek W., Meyer J.-J.Ch. (1999) Agent programming in 3APL. International Journal of Autonomous Agents Multi-Agent Systems 2(4): 357–401CrossRefGoogle Scholar
  28. 28.
    Hindriks, K. V., de Boer, F. S., van der Hoek, W., & Meyer, J.-J.Ch. (2001). Agent programming with declarative goals. In Intelligent Agents VI—Proceedings of the 7th International Workshop on Agent Theories, Architectures, and Languages (ATAL’2000), Lecture Notes in AI. Berlin: Springer.Google Scholar
  29. 29.
    Horty J.F. (1993) Deontic logic as founded on nonmonotonic logic. Annals of Mathematics and Artificial Intelligence (Special Issue on Deontic Logic in Computer Science) 9: 69–91MATHMathSciNetGoogle Scholar
  30. 30.
    Horty J.F. (1994) Moral dilemmas and nonmonotonic logic. Journal of Philosophical Logic 23(1): 35–65MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Horty J.F. (1997) Nonmonotonic foundations for deontic logic. In: Nute D. (eds) Defeasible deontic logic. Kluwer Academic Publishers, Dordrecht, pp 17–44Google Scholar
  32. 32.
    Hübner, J. F., Bordini, R. H., & Wooldridge, M. (2006). Declarative goal patterns for AgentSpeak. In Proceedings of the 5th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’06).Google Scholar
  33. 33.
    Leone N., Pfeifer G., Faber W., Eiter T., Gottlob G., Perri S. et al (2006) The DLV system for knowledge representation and reasoning. ACM Transactions on Computational Logic 7(3): 499–562CrossRefMathSciNetGoogle Scholar
  34. 34.
    Marek V., Truszczynski M. (1993) Nonmonotonic logic: Context-dependent reasoning. Springer, BerlinMATHGoogle Scholar
  35. 35.
    Meyer, J.-J.C., Wieringa, R.J. (eds) (1993) Deontic logic in computer science: Normative system specification. Wiley and Sons Ltd, Chichester, UKMATHGoogle Scholar
  36. 36.
    Meyer, J.-J. Ch., & van der Hoek, W. (1995). Epistemic logic for AI and computer science. Cambridge Tracts in Theoretical Computer Science. Cambridge: Cambridge University Press.Google Scholar
  37. 37.
    Niemelä, I., & Simons, P. (1997). Smodels—An implementation of the stable model and well-founded semantics for normal logic programs. In Proceedings of the 4th International Conference on Logic Programming and Nonmonotonic Reasoning, volume 1265 of Lecture Notes on Artificial Intelligence (pp. 420–429). Berlin: Springer Verlag.Google Scholar
  38. 38.
    Nigam V., Leite J. (2006) A dynamic logic programming based system for agents with declarative goals. In: Baldoni M., Endriss U. (eds) Declarative agent languages and technologies IV (DALT’06), volume 4327 of LNAI. Springer-Verlag, Berlin, pp 174–190CrossRefGoogle Scholar
  39. 39.
    Nute, D. (1994). Defeasible logic. In Handbook of logic in artificial intelligence and logic programming (Vol. 3, pp. 353–395). New York: Oxford University Press.Google Scholar
  40. 40.
    Pokahr, A., Braubach, L., & Lamersdorf, W. (2005). A goal deliberation strategy for BDI agent systems. In MATES 2005, volume 3550 of LNAI (pp. 82–93). Berline: Springer-Verlag.Google Scholar
  41. 41.
    Poole D. (1988) A logical framework for default reasoning. Artificial Intelligence 36: 27–47MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Prakken, H. (2006). Combining sceptical epistemic reasoning with credulous practical reasoning. In Proceedings of the 1st International Conference on Computational Models of Argument (pp. 311–322).Google Scholar
  43. 43.
    Rao, A. S. (1996). AgentSpeak(L): BDI agents speak out in a logical computable language. In W. van der Velde & J. Perram (Eds.), Agents breaking away (pp. 42–55), LNAI 1038. Berlin: Springer-Verlag.Google Scholar
  44. 44.
    Rao A.S., Georgeff M.P. (1991) Modeling rational agents within a BDI-architecture. In: Allen J., Fikes R., Sandewall E. (eds) Proceedings of the 2nd International Conference on Principles of Knowledge Representation and Reasoning (KR’91). Morgan Kaufmann, San Francisco, pp 473–484Google Scholar
  45. 45.
    Rao A.S., Georgeff M.P. (1998) Decision procedures for BDI logics. Journal of Logic and Computation 8(3): 293MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Reiter R. (1980) A logic for default-reasoning. Artificial Intelligence 13: 81–132MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Reiter R. (1987) A theory of diagnosis from first principles. Artificial Intelligence 32: 57–95MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Sardina, S., & Shapiro, S. (2003). Rational action in agent programs with prioritized goals. In Proceedings of the 2nd International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’03) (pp. 417–424), Melbourne.Google Scholar
  49. 49.
    Thangarajah, J., Padgham, L., & Winikoff, M. (2003). Detecting and avoiding interference between goals in intelligent agents. In Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003).Google Scholar
  50. 50.
    Thangarajah, J., Padgham, L., & Winikoff, M. (2003). Detecting and exploiting positive goal interaction in intelligent agents. In Proceedings of the 2nd International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’03) (pp. 401–408), Melbourne.Google Scholar
  51. 51.
    Thangarajah J., Winikoff M., Padgham L., Fischer K. (2002) Avoiding resource conflicts in intelligent agents. In: van Harmelen F. (eds) Proceedings of the 15th European Conference on Artificial Intelligence 2002 (ECAI 2002). Lyon, FranceGoogle Scholar
  52. 52.
    Thomason R.H. (2000) Desires and defaults: A framework for planning with inferred goals. In: Cohn A.G., Giunchiglia F., Selman B. (eds) KR2000: Principles of knowledge representation and reasoning. Morgan Kaufmann, San Francisco, pp 702–713Google Scholar
  53. 53.
    van Fraassen B.C. (1973) Values and the heart’s command. Journal of Philosophy 70(1): 5–19CrossRefGoogle Scholar
  54. 54.
    van Riemsdijk, M. B. (2006). Cognitive agent programming: A semantic approach. PhD thesis.Google Scholar
  55. 55.
    van Riemsdijk, M. B., Dastani, M., Dignum, F., & Meyer, J.-J. Ch. (2005). Dynamics of declarative goals in agent programming. In J. A. Leite, A. Omicini, P. Torroni, & P. Yolum (Eds.), Declarative agent languages and technologies II: Second international workshop (DALT’04), volume 3476 of LNAI pp. 1–18.Google Scholar
  56. 56.
    van Riemsdijk, M. B., Dastani, M., & Meyer, J.-J. Ch. (2005). Semantics of declarative goals in agent programming. In Proceedings of the 4th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’05) (pp. 133–140), Utrecht.Google Scholar
  57. 57.
    van Riemsdijk, M. B., Dastani, M., Meyer, J.-J. Ch., & de Boer, F. S. (2006). Goal-oriented modularity in agent programming. In Proceedings of the 5th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’06) (pp. 1271–1278), Hakodate.Google Scholar
  58. 58.
    van Riemsdijk, M. B., Dastani, M., & Winikoff, M. (2008). Goals in agent systems: A unifying framework. In Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’08) (pp. 713–720), Estoril.Google Scholar
  59. 59.
    van Riemsdijk, M. B., van der Hoek, W., & Meyer, J.-J. Ch. (2003). Agent programming in Dribble: From beliefs to goals using plans. In Proceedings of the 2nd International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’03) (pp. 393–400), Melbourne.Google Scholar
  60. 60.
    von Wright G.H. (1951) Deontic logic. Mind 60: 1–15CrossRefGoogle Scholar
  61. 61.
    Winikoff, M., Padgham, L., Harland, J., & Thangarajah, J. (2002). Declarative and procedural goals in intelligent agent systems. In Proceedings of the 8th International Conference on Principles of Knowledge Representation and Reasoning (KR2002), Toulouse.Google Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • M. Birna van Riemsdijk
    • 1
  • Mehdi Dastani
    • 2
  • John-Jules Ch. Meyer
    • 2
  1. 1.Technische Universiteit DelftDelftThe Netherlands
  2. 2.Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations