Autonomous Agents and Multi-Agent Systems

, Volume 17, Issue 3, pp 397–431 | Cite as

Industrial deployment of multi-agent technologies: review and selected case studies



This paper reports on industrial deployment of multi-agent systems and agent technology. It provides an overview of several application domains and an in-depth presentation of four specific case studies. The presented applications and deployment domains have been analyzed. The analysis indicates that despite strong industrial involvement in this field, the full potential of the agent technology has not been fully utilized yet and that not all of the developed agent concepts and agent techniques have been completely exploited in industrial practice. In the paper, the key obstacles for wider deployments are listed and potential future challenges are discussed.


Multi-agent systems Agent technologies Industrial applications Control Simulation Planning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauer, B., Muller, J. P., & Odell, J. (2004). Agent UML: A formalism for specifying multiagent interaction. In Agent-oriented software engineering (pp. 91–103). Berlin: Springer.Google Scholar
  2. 2.
    Baxter, J., & Horn, G. (2005). Controlling teams of uninhabited air vehicles. In Proceedings of AAMAS-05 – Industry Track (pp. 27–33). ACM Press.Google Scholar
  3. 3.
    Belecheanu, R. A., Munroe, S., Luck, M., Miller, T., McBurney, P., & Pěchouček, M. (2006). Commercial applications of agents: Lessons, experiences and challenges. In Proceedings of AAMAS-06 – Industry Track (pp. 1549–1555). ACM Press.Google Scholar
  4. 4.
    Berry, D., Usmani, A., Torero, J., Tate, A., McLaughlin, S., Potter, S., et al. (2005). FireGrid: Integrated emergency response and fire safety engineering for the future built environment. In Workshop on Ubiquitous Computing and e-Research. Edinburgh, UK: National eScience Centre.Google Scholar
  5. 5.
    Black, G., & Vyatkin, V. (2007). On practical implementation of holonic control principles in baggage handling systems using IEC 61499. In Proceedings of HoloMAS’07 Conference: Holonic and Multi-Agent Systems for Manufacturing. LNAI No. 4659 (pp. 314–325). Heidelberg: Springer Verlag.Google Scholar
  6. 6.
    Bradshaw, J. M., Feltovich, P., Jung, H., Kulkarni, S., Taysom, W., & Uszok, A. (2004). Dimensions of adjustable autonomy and mixed-initiative interaction. In LNCS No. 2969 (pp. 17–39). Heidelberg: Springer Verlag.Google Scholar
  7. 7.
    Brazier F.M.T., Dunin Keplicz B., Jennings N. and Treur J. (1997). DESIRE: Modelling multi-agent systems in a compositional formal framework. International Journal of Cooperative Information Systems 6: 67–94 CrossRefGoogle Scholar
  8. 8.
    Brennan, R. W. (2005). An initial automation object repository for OOONEIDA. In LNAI No. 3593 (pp. 154–164). Heidelberg: Springer Verlag.Google Scholar
  9. 9.
    Brennan R.W. (2007). Toward real-time distributed intelligent control: A survey of research themes and applications. IEEE Transactions on System Man and Cybernetics, Part C 37(5): 744–765 CrossRefGoogle Scholar
  10. 10.
    Brennan R.W. and Norrie D.H. (2001). Agents, holons and function blocks: Distributed intelligent control in manufacturing. Journal of Applied Systems Studies 2(1): 1–19 Google Scholar
  11. 11.
    Bunch, L., Breedy, M., Bradshaw, J., Carvalho, M., & Suri, N. (2005). KARMEN: Multi-agent monitoring and notification for complex processes. In LNAI No. 3593 (pp. 197–206). Heidelberg: Springer VerlagGoogle Scholar
  12. 12.
    Bussmann, S., & Sieverding, J. (2001). Holonic control of an engine assembly plant – An industrial evaluation. In Proceedings of IEEE Conference on SMC, Tucson, AZ.Google Scholar
  13. 13.
    Carvalho, M., Pěchouček, M., & Suri, N. (2006). A mobile agent-based middleware for opportunistic resource allocation and communications. In LNCS No. 3890. Heidleberg: Springer Verlag.Google Scholar
  14. 14.
    Chambers, N., Allen, J., & Galescu, L. (2005). A dialogue-based approach to multi-robot tam control. In Proceedings of Third International Naval Research Labs Multi-Robot Systems Workshop, Washington, DC.Google Scholar
  15. 15.
    Chen, Y., Gregory, B., Easley, M., Peot, M., Lee, J., & Altshuler, T. (2006). Market-based collaborations for unmanned air vehicles operations. In Proceedings of IEEE Workshop on Distributed Intelligent Systems (pp. 273–278). Prague.Google Scholar
  16. 16.
    Chien, S., Sherwood, R., Tran, D., Cichy, B., Rabideau, G., Castaño, R., et al. (2005). Lessons learned from the autonomous sciencecraft experiment. In Proceedings of AAMAS-05 – Industry Track (pp. 11–18). ACM Press.Google Scholar
  17. 17.
    Christensen, J. H. (1994). Holonic manufacturing systems: Initial architecture and standards directions. In Proceedings of 1st European Conference on Holonic Manufacturing Systems, Hannover, pp. 1–20.Google Scholar
  18. 18.
    Deen M.S. (Eds) (2003). Agent based manufacturing: Advances in the holonic approach. Springer Verlag, BerlinMATHGoogle Scholar
  19. 19.
    Dorer, K., & Calisti, M. (2005). An adaptive solution to dynamic transport optimization. In Proceedings of AAMAS-05 – Industry Track. ACM Press.Google Scholar
  20. 20.
    Durfee, E. H. (1999). Distributed problem solving and planning. In A Modern Approach to Distributed Artificial Intelligence (Chapter 3). The MIT PressGoogle Scholar
  21. 21.
    Ermolayev, V., & Matzke W.-E.(2007). Performance in industrial holonic systems. In Proceedings of HoloMAS’07 Conference: Holonic and Multi-Agent Systems for Manufacturing. LNAI No. 4659 (pp. 383–386). Heidelberg: Springer-Verlag.Google Scholar
  22. 22.
    Fletcher, M., McFarlane, D., Thorne, A., Jarvis, D., & Lucas, A. (2003). Evaluating a holonic packing cell. In LNAI No. 2744 (pp. 246–257). Heidelberg: Springer Verlag.Google Scholar
  23. 23.
    Foltýn, L., Tožička, J., Rollo, M., Pěchouček, M., & Jisl, P. (2006). Reflective-cognitive architecture: From abstract concept to self-adapting agent. In Proceedings of IEEE Workshop on Distributed Intelligent Systems (pp. 326–334). Prague.Google Scholar
  24. 24.
    Giorgini, P., Kolp, M., Mylopoulos, J., & Pistore, M. (2004). The tropos methodology: An overview. In F. Bergenti, M.-P. Gleizes, & F. Zambonelli (Eds.), Methodologies and Software Engineering For Agent Systems. Kluwer Academic Publishing.Google Scholar
  25. 25.
    Giorgini, P., Müller, P., & Odell, J., (2003). Agent-oriented software engineering. In LNCS No. 2935. Heidelberg: Springer.Google Scholar
  26. 26.
    Gruver, W. A., Kotak, D. B., van Leeuwen, E. H., & Norrie, D. H. (2003). Holonic manufacturing systems: Phase II. In LNAI No. 2744 (pp. 1–14). Heidelberg: Springer-VerlagGoogle Scholar
  27. 27.
    Hall, K. H., Staron, J. R., & Vrba, P. (2005). Experience with holonic and agent-based control systems and their adoption by industry. In LNAI No. 3593 (pp. 1–10). Heidelberg: Springer-Verlag.Google Scholar
  28. 28.
    Hegny, I., Holzer, R., Grabmair, G., Zoitl, A., Auinger, F., & Wahlmuller, E. (2007). A distributed energy management approach for autonomous power supply systems. In Proceedings of INDIN’07: 5th International Conference on Industrial Informatics (pp. 1111–1116). IEEE.Google Scholar
  29. 29.
    Himoff, J., Rzevski, G., & Skobelev, P. (2006). Multi-agent logistics i-Scheduler for road transportation. In Proceedings of AAMAS-06 – Industry Track (pp. 1514–1521). ACM Press.Google Scholar
  30. 30.
    Himoff, J., Skobelev, P., & Wooldridge, M. (2005). MAGENTA technology: Multi-agent systems for industrial logistics. In Proceedings of AAMAS-05 – Industry Track (pp. 60–66). ACM Press.Google Scholar
  31. 31.
    Hummer, O., Sunder, Ch., Strasser, T., Rooker, M. N., & Kerbleder, G. (2007). Downtimeless system evolution: Current state and future trends. In Proceedings of INDIN’07: 5th International Conference on Industrial Informatics (pp. 1123–1128). IEEE.Google Scholar
  32. 32.
    Jacobi, S., Madrigal, C., Leon-Soto, E., & Fischer, K. (2005). AgentSteel: An agent-based online system for the planning and observation of steel production. In Proceedings of AAMAS-05 – Industry Track (pp. 114–119). ACM Press.Google Scholar
  33. 33.
    James F. and Smit H. (2005). Service-oriented paradigms in industrial automation. IEEE Transactions on Industrial Informatics 1(1): 62–70 CrossRefGoogle Scholar
  34. 34.
    Jennings, N. (1999). Agent-oriented software engineering. In Proceedings of the 9th European Workshop on Modelling Autonomous Agents in a Multi-Agent World : Multi-Agent System Engineering (MAAMAW-99), LNCS No. 1647 (pp. 1–7). Heidelberg: Springer-Verlag.Google Scholar
  35. 35.
    Jennings N.R., Norman T.J., Faratin P., O’Brien P. and Odgers B. (2000). Implementing a business process management system using ADEPT: A real-world case study. Applied Artificial Intelligence Journal 14(5): 421–490 CrossRefGoogle Scholar
  36. 36.
    Karim, S., & Heinze. C. (2005). Experiences with the design and implementation of an agent-based autonomous UAV controller. In Proceedings of AAMAS-05 – Industry Track (pp. 19–26). ACM Press.Google Scholar
  37. 37.
    Karuna H., Valckenaers P., Verstraete1 P., Zamfirescu C. and Van Brussel H. (2005). Emergent forecasting using a stigmergy approach in manufacturing coordination and control. In: Brueckner, S.A., DiMarzo Serugendo, G., Karageorgos, A., and Nagpal, R. (eds) Engineering Self-Organising Systems: Methodologies and Applications, pp 210–222. Springer Verlag, Heidelberg Google Scholar
  38. 38.
    Lastra J.L.M. and Delamer I.M. (2006). Semantic web services in factory automation: Fundamental insights and research roadmap. IEEE Trans. Industrial Informatics 2(1): 1–12 CrossRefGoogle Scholar
  39. 39.
    Lastra, J. L. M., Torres, E. L., & Colombo A. W. (2005). A 3D visualization and simulation framework for intelligent physical agents. In LNAI No. 3593 (pp. 11–22). Heidelberg: Springer Verlag.Google Scholar
  40. 40.
    Lewis, R. W. (2001). Modeling Control Systems Using IEC 61499. IEE Publishing.Google Scholar
  41. 41.
    Mařík, V., Fletcher, M., & Pěchouček, M. (2002). Holons & agents: Recent developments and mutual impacts. In LNAI No. 2322 (pp. 233–267). Heidelberg: Springer Verlag.Google Scholar
  42. 42.
    Mařík, V., & McFarlane, D. (2005). Industrial adoption of agent-based technologies. IEEE Intelligent Systems, 20(1), pp. 27–35.Google Scholar
  43. 43.
    Maturana, F. P., Kotina, R., Staron, R., Tichý, P., & Vrba, P. (2006). Agent-based water/waste water control system architecture. In: Proceedings IADIS International Conference on Applied Computing, San Sebastian.Google Scholar
  44. 44.
    Maturana F.P., Staron R.J., Discenzo F.M., Hall K., Tichý P. and Šlechta P. (2004). Integrating multi-agent systems: A case study. In: Camarinha-Matos, L.M. (eds) Emerging Solutions for Future Manufacturing Systems, pp 99–108. Springer Science+Business Media, New York Google Scholar
  45. 45.
    Maturana, F. P., Staron, R. J., Tichý, P., Šlechta, P., & Vrba, P. (2005). A strategy to implement and validate industrial applications of holonic systems. In LNAI No. 3593 (pp. 111–120). Heidelberg: Springer Verlag.Google Scholar
  46. 46.
    Maturana, F., Tichý, P., Šlechta, P., Staron, R. J., Discenzo, F. M., Hall, K. H., et al. (2003). Cost-based dynamic reconfiguration system for evolving hierarchies. In: LNAI No. 2744 (pp. 310–320). Heidelberg: Springer Verlag.Google Scholar
  47. 47.
    McDonald N. and Znati T. (1999). A mobility-based framework for adaptive clustering in wireless ad-hoc networks. IEEE Journal on Selected Areas in Communication 17(8): 1466–1487 CrossRefGoogle Scholar
  48. 48.
    Muller, J. P. (1996). The design of intelligent agents: A layered approach. In LNAI No. 1177. Heidelberg: Springer Verlag.Google Scholar
  49. 49.
    Muscettola, N., Dorais, G., Fry, C., Levinson, R., & Plaunt, C. (2002). IDEA: Planning at the core of autonomous reactive agents. In Proceedings of the Workshops at the AIPS-2002 Conference, Tolouse, France.Google Scholar
  50. 50.
    Muscettola N., Nayak P., Pell B. and Williams B. (1998). Remote agent: To boldly go where no AI system has gone before. Artificial Intelligence 103(1–2): 5–48 MATHCrossRefGoogle Scholar
  51. 51.
    Nolte, T., Hansson, H., & Bello, L. (2005). Automotive communications past, current and future. In Proceedings of 10th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA’05) (pp. 985–992). IEEE Industrial Electronics Society.Google Scholar
  52. 52.
    Nourbakhsh I., Lewis M., Sycara K., Koes M., Yong M. and Burion S. (2005). Human-robot teaming for search and rescue. IEEE Pervasive Computing 4(1): 72–78 CrossRefGoogle Scholar
  53. 53.
    Obitko, M., & Mařík, V. (2005). Integrating transportation ontologies using semantic web languages. In LNAI No. 3593 (pp. 99–110). Heidelberg: Springer Verlag.Google Scholar
  54. 54.
    Omicini, A. (2001). SODA: Societies and infrastructures in the analysis and design of agent-based systems. In Agent-Oriented Software Engineering, Proceedings First International Workshop AOSE 2000, LNCS No. 1957 (pp. 185–193). Heidelberg: Springer Verlag.Google Scholar
  55. 55.
    Padgham, L., & Winikoff, M.(2002). Prometheus: A methodology for developing intelligent agents. In Proceedings of the First Imitational Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2002). ACM Press.Google Scholar
  56. 56.
    Padgham, L., & Winikoff, M. (2004). Developing intelligent agent systems: A practical guide. Wiley.Google Scholar
  57. 57.
    Paolucci M. and Sacile R. (2005). Agent-based manufacturing and control systems. CRC Press, Boca Raton MATHGoogle Scholar
  58. 58.
    Parunak, H. V. D., Brueckner, S., & Odell, J. (2003). Swarming coordination of multiple UAV’s for collaborative sensing. In Proceedings of Second AIAA Unmanned Unlimited Systems Technologies and Operations Aerospace Land and Sea Conference and Workshop & Exhibit, San Diego.Google Scholar
  59. 59.
    Pěchouček M., Mařík V. and Bárta J. (2002). A knowledge-based approach to coalition formation. IEEE Intelligent Systems 17: 17–25 Google Scholar
  60. 60.
    Pěchouček M., Rehák M., Charvát P., Vlček T. and Kolář M. (2007). Multi-agent planning in mass-oriented production. IEEE Transactions System, Man and Cybernetics, Part C 37(3): 386–395 CrossRefGoogle Scholar
  61. 61.
    Pěchouček, M., Šišlák, D., Pavlíček, D., & Uller, M. (2006). Autonomous agents for air-traffic deconfliction. In Proceedings AAMAS-06 – Industry Track (pp. 1498–1505). ACM Press.Google Scholar
  62. 62.
    Pěchouček M., Vokřínek J. and Bečvář P. (2005). ExPlanTech: Multiagent support for manufacturing decision making. In IEEE Intelligent Systems 20(1): 67–74 CrossRefGoogle Scholar
  63. 63.
    Peysakhov, M., Dugan, C., Modi, J., & Regli, W. (2006). Quorum sensing on mobile ad-hoc networks. In Proceedings of AAMAS-06 (pp. 1104–1106). ACM Press.Google Scholar
  64. 64.
    Rao, A., & Georgeff, M. (1995). BDI Agents: From theory to practice. In Proceedings the First International Conference on Multi-Agent Systems (ICMAS-95), San Francisco.Google Scholar
  65. 65.
    Regis, V., Osher, Y., & Andrew, A. (2006). UAV airspace management system UAMS. In Proceedings of AAMAS-06 – Demo Track (pp. 1449–1450). ACM Press.Google Scholar
  66. 66.
    Rehak, M., Pechoucek, M., Bartos, K., Grill, M., Celeda, P., & Krmicek, V. (2008). CAMNEP: An intrusion detection system for high-speed networks. In Progress in informatics, pp. 65–74.Google Scholar
  67. 67.
    Rollo, M., Novák, P., & Jisl, P. (2005). Simulation of underwater surveillance by a team of autonomous robots. In LNAI No. 3593 (pp. 207–220). Heidelberg: Springer Verlag.Google Scholar
  68. 68.
    Rollo, M., Novák, P., Kubalík, J. & Pěchouček, M. (2004). Alarm root cause detection system. In Emerging Solutions for Future Manufacturing Systems (pp. 109–116). New York: Springer.Google Scholar
  69. 69.
    Schurr, N., Marecki, J., Tambe, M., & Scerri, P. (2005). Demonstration of DEFACTO: Training tool for incident commanders. In Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems (The Netherlands, July 25–29, 2005), AAMAS’05 (pp. 147–148). New York: ACM.Google Scholar
  70. 70.
    Semmel, G., Davis, S., Leucht, K., Rowe, D., Kelly, A., & Bölöni, L. (2005). Launch commit criteria monitoring agent. In Proceedings of AAMAS-05 – Industry Track (pp. 3–10). ACM Press.Google Scholar
  71. 71.
    Shehory, O., Sycara, K., Sukthankar, G., & Mukherjee, V. (1999). Agent aided aircraft maintenance. In Proceedings Third International Conference on Autonomous Agents, Seattle, Washington, USA.Google Scholar
  72. 72.
    Sierhuis, M., Clancey, W. J., & Sims, H. M. (2002). Multiagent modeling and simulation in human-robot mission pperations work system design. In Proceedings of the Hawai’i International Conference on System Sciences. IEEE.Google Scholar
  73. 73.
    Sierhuis, M., Clancey, W. J., van Hoof, R., & de Hoog, R. (2000). Modeling and simulating human activity. In Autonomous Agents 2000 Workshop on Intelligent Agents for Computer Supported Co-operative Work: Technology and Risks, Barcelona. Spain.Google Scholar
  74. 74.
    Šišlák, D., Pěchouček, M., Volf, P., Pavlíček, D., Samek, J., Mařík, V., & Losiewicz, P. (2008). AGENTFLY: Towards multi-agent technology in free flight air traffic control. In Defence Industry Application of Autonomous Agents and Multi-Agent Systems, Birkhäuser Verlag Publishing (accepted for publication).Google Scholar
  75. 75.
    Šišlák, D., Rehák, M., Pěchouček, M., & Benda, P. (2005). Optimizing agents operation in partially inaccessible and disruptive environment. In Proceedings Intelligent Agent Technology, 2005 IEEE/WIC/ACM International Conference.Google Scholar
  76. 76.
    Šišlák D., Rehák M., Pěchouček M., Rollo M. and Pavlíček D. (2005). A-globe: Agent development platform with inaccessibility and mobility support. In: Unland, R., Klusch, M., and Calisti, M. (eds) Software Agent-Based Applications, Platforms and Development Kits, pp 21–46. Birkhauser Verlag, Berlin Google Scholar
  77. 77.
    Staron, R. J., Tichý, P., Sindelář, R., & Maturana, F. P. (2007). Methods to observe the clustering of agents within a multi-agent system. In Proceedings of HoloMAS’07 Conference: Holonic and Multi-Agent Systems for Manufacturin, LNAI No. 4659 (pp. 127–136). Heidelberg: Springer Verlag.Google Scholar
  78. 78.
    Strasser, T., Zoitl, A., Auinger, F., & Sunder Ch. (2005). Towards engineering methods for reconfiguration of distributed real-time control systems based on the reference model of IEC 61499. In LNAI No. 3593 (pp. 165–175). Heidelberg: Springer Verlag.Google Scholar
  79. 79.
    Sycara, K., Giampapa, J. A., Langley, B. K., & Paolucci, M. (2003). The RETSINA MAS, a case study. In LNCS No. 2603 (pp. 232–250). Heidelberg: Springer Verlag.Google Scholar
  80. 80.
    Tambe M. (1997). Towards flexible teamwork. Journal of Artificial Intelligence Research 7: 83–124 Google Scholar
  81. 81.
    Tate A. (2006). The helpful environment: Geographically dispersed intelligent agents that collaborate. IEEE Intelligent Systems 21(3): 57–61 CrossRefGoogle Scholar
  82. 82.
    Tichý, P. (2004). Fault tolerant and fixed scalable structure of middle agents. Computational logic in multi-agent systems. In 4th International Workshop, CLIMA IV, LNCS No. 3259 (pp. 53–62). Heidelberg: Springer-Verlag.Google Scholar
  83. 83.
    Tichý, P., Šlechta, P., Maturana, F., & Balasubramanian, S. (2002). Industrial MAS for planning and control. In LNAI No. 2322 (pp. 280–295). Heidelberg: Springer Verlag.Google Scholar
  84. 84.
    Tichý P., Šlechta P., Staron R.J., Maturana F.P. and Hall K.H. (2006). Multiagent technology for fault tolerance and flexible control. IEEE Transactions on System, Man and Cybernetics, Part C 36(5): 700–705 CrossRefGoogle Scholar
  85. 85.
    Tomlin, C., Pappas, G., & Sastry, S. (1997). Conflict resolution for air traffic management: A case study in multi-agent hybrid systems. IEEE Transactions on Automatic Control.Google Scholar
  86. 86.
    Tožička, J., Jakob, M., & Pěchouček, M. (2006). Market-inspired approach to collaborative learning. In LNAI No. 4149 (pp. 213–227). Heidelberg:Springer Verlag.Google Scholar
  87. 87.
    van Doesburg, W., Heuvelink, A., & van den Broek, E. (2005). TACOP: A cognitive agent for a naval training simulation environment. In Proceedings of AAMAS-05 – Industry Track (pp. 34–41). ACM Press.Google Scholar
  88. 88.
    Vrba, P., & Macûrek, F., & Mařík, V. (2006). Using radio frequency identification in agent-based control systems for industrial applications. In Proceedings of 12th IFAC Symp INCOM, pp. 459–464.Google Scholar
  89. 89.
    Vrba P. and Mařík V. (2005). From holonic control to virtual enterprises: The multi-agent approach. In: Zurawski, R. (eds) The Industrial Information Technology – Handbook, pp 107–109. CRC Press, Boca Raton Google Scholar
  90. 90.
    Wernstedt, F., & Davidsson, P. (2002). An agent-based approach to monitoring and control of district heating systems. In LNAI No. 2358 (pp. 801–812). Heidelberg: Springer Verlag.Google Scholar
  91. 91.
    Woghiren, K. (2005). Modeling the aerospace aftermarket with multi-agents systems. Invited talk at Agent Technology Conference, available from, Stockholm.
  92. 92.
    Wollkind, S., Valasek, J., & Ioerger, T. R. (2004). Automated conflict resolution for air traffic management using cooperative multi-agent negotiation. In Proceedings of the American Institute of Aeronautics and Astronautics Conference on Guidance, Navigation, and Control, Providence, RI.Google Scholar
  93. 93.
    Wooldridge M., Jennings N.J. and Kinny D. (2000). The Gaia methodology for agent-oriented analysis and design. Journal of Autonomous Agents and Multi-Agent Systems 3(3): 285–312 CrossRefGoogle Scholar
  94. 94.
    Yu, B., Scerri, P., & Sycara, K. (2006). Scalable and reliable data delivery in mobile ad hoc sensor networks. In Proceedings of AAMAS-06 (pp. 1071–1078). ACM Press.Google Scholar
  95. 95.
    Zambonelli F. and Omicini A. (2004). Challenges and research directions in agent-oriented software engineering. Journal of Autonomous Agents and Multi-Agent Systems 9(3): 253–287 CrossRefGoogle Scholar
  96. 96.
    Zlotkin, G., & Rosenschein, J. S. (1998). Negotiation and task sharing among autonomous agents in cooperative domains. In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (pp. 912–917). San Mateo, CA: Morgan KaufmannGoogle Scholar
  97. 97.
    Zoitl, A., Strasser, T., Hall, K. H., Staron, R. J., Sunder, Ch., & Favre-Bulle, B. (2007). The past, present, and future of IEC 61499. In Proceedings of HoloMAS’07 Conference: Holonic and Multi-Agent Systems for Manufacturing. LNAI No. 4659 (pp. 1–14). Heidelberg: Springer Verlag.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Gerstner Laboratory, Agent Technology Group, Department of CyberneticsCzech Technical UniversityPragueCzech Republic
  2. 2.Rockwell Automation Research CenterPragueCzech Republic

Personalised recommendations