Autonomous Agents and Multi-Agent Systems

, Volume 17, Issue 1, pp 36–69 | Cite as

BIO logical agents: Norms, beliefs, intentions in defeasible logic

Article

Abstract

In this paper we follow the BOID (Belief, Obligation, Intention, Desire) architecture to describe agents and agent types in Defeasible Logic. We argue, in particular, that the introduction of obligations can provide a new reading of the concepts of intention and intentionality. Then we examine the notion of social agent (i.e., an agent where obligations prevail over intentions) and discuss some computational and philosophical issues related to it. We show that the notion of social agent either requires more complex computations or has some philosophical drawbacks.

Keywords

Defeasible logic Intention and obligation Agent types Social agents Computational complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams F. (1986). Intention and intentional action: The simple view. Mind and Language 1: 281–301 CrossRefGoogle Scholar
  2. 2.
    Antoniou, G., Billington, D., Governatori, G., & Maher, M. J. (2000). A flexible framework for defeasible logics. In Proceedings of American National Conference on Artificial Intelligence (AAAI-2000) (pp. 401–405). Menlo Park, CA: AAAI/MIT Press.Google Scholar
  3. 3.
    Antoniou G., Billington D., Governatori G. and Maher M.J. (2001). Representation results for defeasible logic. ACM Transactions on Computational Logic 2(2): 255–287 CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bassiliades, N., Antoniou, G., & Vlahavas, I. (2004). DR-DEVICE: A defeasible logic system for the Semantic Web. In H. J. Ohlbach & S. Schaffert (Eds.), 2nd Workshop on Principles and Practice of Semantic Web Reasoning, number 3208 in LNCS (pp. 134–148). Springer.Google Scholar
  5. 5.
    Billington D. (1993). Defeasible logic is stable. Journal of Logic and Computation 3(4): 379–400 MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bratman M.E., Israel D.J. and Pollack M.E. (1988). Plans and resource-bounded practical reasoning. Computational Intelligence 4: 349–355 CrossRefGoogle Scholar
  7. 7.
    Bratman M.E. (1987). Intentions, plans and practical reason. Harvard University Press, Cambridge, MA Google Scholar
  8. 8.
    Broersen J., Dastani M., Hulstijn J. and van der Torre L. (2002). Goal generation in the BOID architecture. Cognitive Science Quarterly 2(3–4): 428–447 Google Scholar
  9. 9.
    Cohen P. and Levesque H. (1990). Intention is choice with commitment. Artificial Intelligence 42: 213–261 CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Dastani, M., Governatori, G., Rotolo, A., & van der Torre, L. (2005). Preferences of agents in defeasible logic. In S. Zhang & R. Jarvis (Eds.), Proceedings Australian AI05, volume 3809 of LNAI (pp. 695–704). Springer.Google Scholar
  11. 11.
    Dastani, M., Governatori, G., Rotolo, A., & van der Torre, L. (2005). Programming cognitive agents in defeasible logic. In G. Sutcliffe & A. Voronkov (Eds.), Proceedings LPAR 2005, volume 3835 of LNAI (pp. 621–636). Springer.Google Scholar
  12. 12.
    Dignum F. (1999). Autonomous agents with norms. Artificial Intelligence and Law 7(1): 69–79 CrossRefGoogle Scholar
  13. 13.
    Dignum, F., Morley, D., Sonenberg, L., & Cavedon, L. (2000). Towards socially sophisticated BDI agents. In Proceedings of ICMAS 4th International Conference on Multi-Agent Systems (pp. 111–118). Boston: IEEE Computer Society.Google Scholar
  14. 14.
    Garey, M., & Johnson, D. (1979). Computers and intractability: A guide to the theory of NP-completeness. W. H. Freeman and Company.Google Scholar
  15. 15.
    Girle R. (2000). Modal logic and philosophy. Acumen, Teddington Google Scholar
  16. 16.
    Governatori, G., & and Padmanabhan, V. (2003). A defeasible logic of policy-based intention. In Proceedings of AI 2003. Springer Verlag.Google Scholar
  17. 17.
    Governatori, G., & Rotolo, A. (2004). Defeasible logic: Agency, intention and obligation. In A. Lomuscio & D. Nute (Eds.), Deontic logic in computer science, number 3065 in LNAI (pp. 114–128). Berlin: Springer-Verlag.Google Scholar
  18. 18.
    Governatori, G., & Rotolo, A. (2008). A computational framework for institutional agency. Artificial Intelligence and Law. (Forthcoming).Google Scholar
  19. 19.
    Governatori, G., Rotolo, A., & Padmanabhan, V. (2006). The cost of social agents. In 5th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS06) (pp. 513–520). New York: ACM.Google Scholar
  20. 20.
    Kagal L. and Finin T. (2007). Modeling conversation policies using permissions and obligations. Journal of Autonomous Agents and Multi-Agent Systems 14(2): 187–206 CrossRefGoogle Scholar
  21. 21.
    Knobe J. (2003). Intentional action and side effects in ordinary language. Analysis 63: 190–193 CrossRefGoogle Scholar
  22. 22.
    Kraus S., Lehmann D. and Magidor M. (1990). Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44: 167–207 CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Maher M.J. (2001). Propositional defeasible logic has linear complexity. Theory and Practice of Logic Programming 1(6): 691–711 MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Maher M.J., Rock A., Antoniou G., Billignton D. and Miller T. (2001). Efficient defeasible reasoning systems. International Journal of Artificial Intelligence Tools 10(4): 483–501 CrossRefGoogle Scholar
  25. 25.
    McCann H. (1986). Rationality and the range of intention. Midwest Studies in Philosophy 10: 191–211 CrossRefGoogle Scholar
  26. 26.
    Mele A. and Sverdlik S. (1996). Intention, intentional action and moral responsibility. Philosophical Studies 82: 265–287 CrossRefGoogle Scholar
  27. 27.
    Nute, D. (1987). Defeasible reasoning. In Proceedings of 20th Hawaii International Conference on System Science (pp. 470–477). IEEE press.Google Scholar
  28. 28.
    Nute, D. (1994). Defeasible logic. In Handbook of logic in artificial intelligence and logic programming (Vol. 3, pp. 353–395). Oxford University Press.Google Scholar
  29. 29.
    Nute D. (Ed.) (1997). Defeasible deontic logic. Kluwer, DordrechtMATHGoogle Scholar
  30. 30.
    Nute D. (1998). Norms, priorities and defeasible logic. In: McNamara, P. and Prakken, H. (eds) Norms, ogics and information system, pp 201–218. IOS Press, Amsterdam Google Scholar
  31. 31.
    Pitt J. (Ed.) (2005). Open agent societies. Wiley, Chichester Google Scholar
  32. 32.
    Rao, A. S., & Georgeff, M. P. (1991). Modelling rational agents within a BDI-architecture. In Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning (KR’91) (pp. 473–484). Morgan Kaufmann.Google Scholar
  33. 33.
    Sartor G. (2005). Legal reasoning: A cognitive approach to the law. Springer, Dordrecht Google Scholar
  34. 34.
    Searle J. (Ed.) (1983). Intentionality. Cambridge University Press, Cambridge Google Scholar
  35. 35.
    Thomason R.H. (2000). Desires and defaults: A framework for planning with inferred goals. In: Cohn, A.G., Giunchiglia, F. and Selman, B. (eds) KR2000, pp. Morgan Kaufmann, San Francisco Google Scholar
  36. 36.
    von Wright G.H. (1963). Norm and action. Routledge, London Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of ITEEThe University of QueenslandBrisbaneAustralia
  2. 2.CIRSFID-Law FacultyUniversity of BolognaBolognaItaly

Personalised recommendations