Autonomous Agents and Multi-Agent Systems

, Volume 19, Issue 1, pp 53–75 | Cite as

Modal tableaux for verifying stream authentication protocols

  • Mehmet A. Orgun
  • Guido Governatori
  • Chuchang Liu
Article

Abstract

To develop theories to specify and reason about various aspects of multi-agent systems, many researchers have proposed the use of modal logics such as belief logics, logics of knowledge, and logics of norms. As multi-agent systems operate in dynamic environments, there is also a need to model the evolution of multi-agent systems through time. In order to introduce a temporal dimension to a belief logic, we combine it with a linear-time temporal logic using a powerful technique called fibring for combining logics. We describe a labelled modal tableaux system for the resulting fibred belief logic (FL) which can be used to automatically verify correctness of inter-agent stream authentication protocols. With the resulting fibred belief logic and its associated modal tableaux, one is able to build theories of trust for the description of, and reasoning about, multi-agent systems operating in dynamic environments.

Keywords

Belief logic Temporal logic Fibring logics System-specific trust theories Modal tableaux Security protocols 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Archer, M. (2002). Proving correctness of the basic TESLA multicast stream authentication protocol with TAME. In Workshop on issues in the theory of security. Unpaginated proceedings available from http://www.dsi.unive.it/IFIPWG1_7/WITS2002/prog/annotated_program.html.
  2. 2.
    Artosi, A., Benassi, P., Governatori, G., & Rotolo, A. (1998). Shakespearian modal logic: A labelled treatment of modal identity. Advances in modal logic, 1, 1–21. CSLI.Google Scholar
  3. 3.
    Bennett B., Dixon Cl., Fisher M., Hustadt U., Franconi E., Horrocks I., de Rijke M. (2002). Combinations of modal logics. Artificial Intelligence Review 17(1): 1—20MATHCrossRefGoogle Scholar
  4. 4.
    Broadfoot P., & Lowe, G. (2002). Analysing a stream authentication protocol using model checking. In Proc 7th ESORICS.Google Scholar
  5. 5.
    Burrows M., Abadi M., Needham R.M. (1990). A logic of authentication. ACM Transactions on Computer Systems 8(1): 18–36CrossRefGoogle Scholar
  6. 6.
    Clarke, E., Jha, S., & Marrero, W. (1998). A machine checkable logic of knowledge for specifying security properties of electronic commerce protocols. In Proceedings of the Workshop on Formal Methods and Security Protocols.Google Scholar
  7. 7.
    Costa-Leite, A. (2004). Towards a general theory of the combination of logics. In Aspects of universal logic, Travaux de Logique [Works on logic] (Vol. 17, pp.219–230). Université de Neuchatel.Google Scholar
  8. 8.
    Dixon, C., Carmen Fernández Gago, M., Fisher, M., van der Hoek, W. (2004). Using temporal logics of knowledge in the formal verification of security protocols. In Proceedings of the 11th International Symposium on Temporal Representation and Reasoning (TIME 2004) (pp. 148–151). Tatihou Island, Normandie: IEEE Computer Society.Google Scholar
  9. 9.
    Durgin N., Mitchell J., Pavlovic D. (2003). A compositional logic for proving security properties of protocols. Journal of Computer Security 11, 677–721Google Scholar
  10. 10.
    Elofson, G. (1998). Developing trust with intelligent agent: An exploratory study. In Proceedings of the first International Workshop on Trust (pp. 125–139).Google Scholar
  11. 11.
    Finger M., Gabbay D.M. (1997). Adding a temporal dimension to a logic system. Journal of Logic, Language and Information 1, 221–237MathSciNetGoogle Scholar
  12. 12.
    Fisher M. (2004). Temporal development methods for agent-based systems. Autonomous Agents and Multi-Agent Systems 10(1): 41–66CrossRefGoogle Scholar
  13. 13.
    Fitting, M. (1983). Proof methods for modal and intuitionistic logics. Reidel.Google Scholar
  14. 14.
    Gabbay, D. M. (1999). Fibring logics. OUP.Google Scholar
  15. 15.
    Gabbay, D. M., & Governatori, G. (2000). Fibred modal tableaux. In Labelled deduction (pp. 163–194). Kluwer.Google Scholar
  16. 16.
    Governatori, G. (1995). Labelled tableaux for multi-modal logics. In Proc. Tableaux’95, LNAI 918 (pp. 79–94). Springer.Google Scholar
  17. 17.
    Governatori, G. (1997). Un modello formale per il ragionamento giuridico. PhD thesis, University of Bologna.Google Scholar
  18. 18.
    Governatori, G., Padmanabhan, V. and Sattar, A. (2002). On fibring semantics for BDI logics. In Proc JELIA 2002, LNCS 2424 (pp. 198–209). Springer.Google Scholar
  19. 19.
    Halpern J. Y., & Moses, Y. (1992). A guide to completeness and complexity for modal logics of knowledge and belief. In Artificial intelligence (Vol. 54, pp. 319–379).Google Scholar
  20. 20.
    Hughes, G. E., & Cresswell, M. J. (1996). A new introduction to modal logic. Routledge.Google Scholar
  21. 21.
    Kripke S. (1963). Semantical considerations on modal logic. Acta Philosophica Fennica 16, 83–94MATHMathSciNetGoogle Scholar
  22. 22.
    Liu, C. (2001). Logical foundations for reasoning about trust in secure digital communication. In Proceedings of the 14th Australian Joint Conference on Artificial Intelligence, Lecture notes in computer science 2256 (pp. 333–344). Adelaide: Springer.Google Scholar
  23. 23.
    Liu C., Orgun M.A. (1996). Dealing with multiple granularity of time in temporal logic programming. Journal of Symbolic Computation 22, 699–720MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Liu C., Orgun M.A. (1999). Verification of reactive systems using temporal logic with clocks. Theoretical Computer Science 220(2): 377–408MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Liu, C., Ozols, M., & Orgun, M. A. (2004). A temporalised belief logic for specifying the dynamics of trust for multi-agent systems. In Proceedings of the Ninth Asian Computer Science Conference, Lecture notes in computer science (Vol. 3321, pp. 142–156). Springer-Verlag.Google Scholar
  26. 26.
    Lomuscio, A., & Wozna, B. (2006). A complete and decidable security-specialised logic and its application to the TESLA protocol. In Proceedings of the 5th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2006) (pp. 145–152). Hakodate: ACM Press.Google Scholar
  27. 27.
    Ma, J. & Orgun, M. A. (2006). Trust management and trust theory revision. In IEEE transactions on systems, man and cybernetics, part A (Vol. 36, pp. 451–460).Google Scholar
  28. 28.
    Orgun, M. A., Ma, J., Liu, C., & Governatori, G. (2006). Analysing stream authentication protocols in autonomous agent-based systems. In Proceedings of the Second International Symposium on Dependable Autonomic and Secure Computing (DASC 2006) (pp. 325–332). Indianapolis: IEEE Computer Society.Google Scholar
  29. 29.
    Paulson, L. C. (1994). Isabelle—a generic theorem prover (with a contribution by T. Nipkow). Springer-Verlag.Google Scholar
  30. 30.
    Perrig, A. Canetti, R. Tygar, J. D., & Song, D. (2000). Efficient authentication and signing of multicast streams over lossy channels. In IEEE symposium on security and privacy (pp. 56–73).Google Scholar
  31. 31.
    Yahalom, R., Klein, B., Beth, T. (1993). Trust relationships in secure systems—a distributed authentication perspective. In Proceedings of the 1993 IEEE Symposium on Security and Privacy (p.150).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mehmet A. Orgun
    • 1
  • Guido Governatori
    • 2
  • Chuchang Liu
    • 3
  1. 1.Department of ComputingMacquarie UniversitySydneyAustralia
  2. 2.School of ITEEThe University of QueenslandBrisbaneAustralia
  3. 3.C3I DivisionDSTOEdinburghAustralia

Personalised recommendations