Advertisement

Autonomous Agents and Multi-Agent Systems

, Volume 17, Issue 2, pp 157–189 | Cite as

Organisational change through influence

  • Mairi McCallum
  • Wamberto W. Vasconcelos
  • Timothy J. Norman
Article

Abstract

Influence is a phenomenon underpinning many types of interactions in both human and artificial organisations, and has a significant impact on the operation of the organisation. If influence can be examined at the organisational level, instead of at the level of the agents involved, engineers can better understand an organisation’s robustness to structural, behavioural and population changes. In this paper we present the Model of Organisational Change using Agents (MOChA) as a means to formally specify, check and simulate organisations using agents, particularly with a view to determining the impact of influence on the operation of an organisation. This formalisation of influence is not specific to our model, and is relevant and adaptable to any organisational model in which explicit relationships among roles of agents are formed.

Keywords

Organisations Organisational changes Formal specification and analysis/verification Software agents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boella, G., & van der Torre, L. (2004). Organizations as socially constructed agents in the agent oriented paradigm. In Proceedings of Engineering Societies in the Agent World 2004. Springer-Verlag.Google Scholar
  2. 2.
    Carlsson, M., Ottosson, G., & Carlson, B. (1997). An open-ended finite domain constraint solver. In Ninth International Symposium on Programming Languages, Implementations, Logics, and Programs (PLILP’97) (Vol. 1292). Berlin: Springer-Verlag.Google Scholar
  3. 3.
    Castelfranchi C. (1998). Modelling social action for AI agents. Artificial Intelligence, 103:157–182MATHCrossRefGoogle Scholar
  4. 4.
    Cavedon, L., & Sonenberg, L. (1998). On social commitment, roles and preferred goals. In Proceedings of the Third International Conference on Multi-Agent Systems (pp. 80–87).Google Scholar
  5. 5.
    Conte, R., & Castelfranchi, C. (1995). Cognitive and social action. UCL Press.Google Scholar
  6. 6.
    Dignum, V. (2004). A model for organizational interaction: Based on agents, founded in logic. PhD thesis, Utrecht University.Google Scholar
  7. 7.
    Dignum, V., Dignum, F., & Sonenberg, L. (2004). Towards dynamic reorganization of agent societies. In ECAI Workshop on Coordinating Emergent Agent Societies.Google Scholar
  8. 8.
    Esteva, M. (2003). Electronic institutions: From specification to development. PhD thesis, Universitat Politècnica de Catalunya (UPC). IIIA monography (Vol. 19).Google Scholar
  9. 9.
    Ferber, J., Gutknecht, O., & Fabien, M. (2003). From agents to organizations: An organizational view of multi-agent systems. In P. Giorgini, J. P. Müller, & J. Odell (Eds.), 4th International Workshop on Agent Oriented Engineering. LNCS 2935, Springer-Verlag.Google Scholar
  10. 10.
    Halmos, P. R. (2001). Naive set theory. Springer-Verlag.Google Scholar
  11. 11.
    Van Hentenryck P., Simonis H., Dincbas M. (1992). Constraint satisfaction using constraint logic programming. Artificial Intelligence, 58(1–3):113–159MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Jones A.J.I., Sergot M. (1996). A formal characterisation of institutionalised power. Journal of the Interest Group in Pure and Applied Logic, 4(3):427–443MATHMathSciNetGoogle Scholar
  13. 13.
    Jones, A. J. I., & Sergot, M. (1993). On the characterisation of law and computer systems: the normative systems perspective. In J.-J. Meyer, & R. J. Wieringa (Eds.), Deontic Logic in Computer Science: Normative System Specification (pp. 275–307). Wiley.Google Scholar
  14. 14.
    Juan, T., Pearce, A., & Sterling, L. (2002). ROADMAP: Extending the Gaia methodology for complex open systems. In Autonomous Agents and Multi-Agent Systems,(AAMAS 2002).Google Scholar
  15. 15.
    Kollingbaum, M. J. (2005). Norm-governed practical reasoning agents. PhD thesis, University of Aberdeen.Google Scholar
  16. 16.
    Kollingbaum, M. J., & Norman, T. J. (2004). Norm adoption and consistency in the NoA agent architecture. In M. Dastani, J. Dix, & A. Seqhrouchni (Eds.), Programming Multiagent Systems: Languages, Frameworks Techniques, and Tools, volume 3067 of Lecture Notes in Artificial Intelligence. Springer-Verlag.Google Scholar
  17. 17.
    Kramer, B., & Mylopoulos, J. (1992). Knowledge representation. In S. C. Shapiro (Ed.), Encyclopedia of Artificial Intelligence (Vol. 1). Wiley.Google Scholar
  18. 18.
    Krogh, C. (1995). Obligations in multiagent systems. In A. Åmodt, & J. Komorowski (Eds.), Proceedings of the Fifth Scandinavian Conference on Artificial Intelligence (SCAI’95) (pp. 19–30). Trondheim, May 29–31, 1995.Google Scholar
  19. 19.
    McCallum, M. (2006). MOCHA: Modelling organisational change using agents. PhD thesis, Department of Computing Science, University of Aberdeen, Aberdeen, United Kingdom.Google Scholar
  20. 20.
    Norman, T. J., & Reed, C. A. (1986, 2001). Delegation and responsibility. Lecture Notes in Computer Science.Google Scholar
  21. 21.
    Pacheco O., Carmo J. (2003). A role based model for the normative specification of organized collective agency and agents interaction. Autonomous Agents and Multi-Agent Systems, 6(6): 145–184CrossRefGoogle Scholar
  22. 22.
    Panzarasa P., Jennings N.R., Norman T.J. (2001). Social mental shaping: Modelling the impact of sociality on the mental states of autonomous agents. Computational Intelligence, 17(4): 738–782CrossRefMathSciNetGoogle Scholar
  23. 23.
    Pörn, I. (1970). The logic of power. Basil Blackwell.Google Scholar
  24. 24.
    Russell S.J., Norvig P. (2003). Artificial intelligence: A modern approach (2nd ed). Prentice Hall Inc., U.S.A.Google Scholar
  25. 25.
    Sichman, J. S., & Demazeau, Y. (2001). On social reasoning in multi-agent systems. In Revista Ibero-Americana de Inteligência Artificial (Vol. 13, pp. 68–84).Google Scholar
  26. 26.
    Swedish Institute of Computer Science. SICStus prolog. http://www.sics.se/isl/sicstuswww/site/index.html, visited November 28th 2005.
  27. 27.
    van Lamsweerde, A. (2000). Formal specification: A roadmap. In Proceedings of the Conference on the Future of Software Engineering (pp. 147–159).Google Scholar
  28. 28.
    Vasconcelos W.W., Robertson D., Sierra C., Esteva M., Sabater J., Wooldridge M. (2004). Rapid prototyping of large multi-agent systems through logic programming. Annals of Mathematics and AI, 41(2–4):135–169MATHGoogle Scholar
  29. 29.
    Vasconcelos, W. W., Sabater, J., Sierra, C., & Querol, J. (2002). Skeleton-based agent development for electronic institutions. In Proceedings of the 1st International Joint Conference on Autonomous Agents & Multi-Agent Systems, Bologna, Italy, ACM.Google Scholar
  30. 30.
    Vasconcelos, W. W., Sierra, C., & Esteva, M. (2002). An approach to rapid prototyping of large multi-agent systems. In Proceedings of the 17th IEEE International Conference on Automated Software Engineering (pp. 13–22).Google Scholar
  31. 31.
    Wooldridge M., Jennings N.R., Kinny D. (2000). The GAIA methodology for agent-oriented analysis and design. Autonomous Agents and Multi-Agent Systems, 3(3): 285–312CrossRefGoogle Scholar
  32. 32.
    Zambonelli F., Jennings N.R., Wooldridge M. (2001). Organisational rules as an abstraction for the analysis and design of multi-agent systems. International Journal of Software Engineering and Knowledge Engineering, 11(3): 303–328CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mairi McCallum
    • 1
  • Wamberto W. Vasconcelos
    • 1
  • Timothy J. Norman
    • 1
  1. 1.Department of Computing ScienceUniversity of AberdeenAberdeenUK

Personalised recommendations