Autonomous Agents and Multi-Agent Systems

, Volume 15, Issue 1, pp 29–45 | Cite as

Local strategy learning in networked multi-agent team formation

Article

Abstract

Networked multi-agent systems are comprised of many autonomous yet interdependent agents situated in a virtual social network. Two examples of such systems are supply chain networks and sensor networks. A common challenge in many networked multi-agent systems is decentralized team formation among the spatially and logically extended agents. Even in cooperative multi-agent systems, efficient team formation is made difficult by the limited local information available to the individual agents. We present a model of distributed multi-agent team formation in networked multi-agent systems, describe a policy learning framework for joining teams based on local information, and give empirical results on improving team formation performance. In particular, we show that local policy learning from limited information leads to a significant increase in organizational team formation performance compared to a random policy.

Keywords

Multi-agent learning Networked multi-agent systems Agent learning and adaptivity Probabilistic reasoning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdallah, S., & Lesser, V. (2004). Organization-based cooperative coalition formation. In: Proceedings of the IEEE/WIC/ACM international conference on intelligent agent technology (IAT).Google Scholar
  2. Albert R. and Barabási A. (2002). Statistical mechanics of complex networks. Review of Modern Physics 99: 7314–7316 Google Scholar
  3. Bernstein D.S., Givan R., Immerman N. and Zilberstein S. (2002). The complexity of decentralized control of Markov decision processes. Mathematics of Operations Research 27: 819–840MATHCrossRefMathSciNetGoogle Scholar
  4. Culler D., Estrin D. and Srivastava M. (2004). Overview of sensor networks. IEEE Computer 37: 41–19Google Scholar
  5. Domingos P. and Pazzani M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29: 103–130MATHCrossRefGoogle Scholar
  6. Dutta S. and Sen S. (2003). Forming stable partnerships. Cognitive Systems Research 4: 211–221CrossRefGoogle Scholar
  7. Erdos P. and Renyi A. (1959). On random graphs. Publicationes Mathematicae 6: 290–297MathSciNetGoogle Scholar
  8. Excelente-Toledo C.B. and Jennings N.R. (2003). Learning when and how to coordinate. Web Intelligence and Agent System 1: 203–218Google Scholar
  9. Gaston M., & desJardins M. (2003). Team formation in complex networks. In: Proceedings of the 1st NAACSOS conference.Google Scholar
  10. Gaston, M., Simmons, J., & desJardins, M. (2004). Adapting network structures for efficient team formation. In: Proceedings of the AAMAS-04 workshop on learning and evolution in agent-based systems.Google Scholar
  11. Gaston, M. E., & desJardins, M. (2005). Agent-organized networks for dynamic team formation. In: Proceedings of the 2005 international conference on autonomous agents and multi-agent systemsGoogle Scholar
  12. Horling, B., Benyo, B., & Lesser, V. (2001). Using self diagnosis to adapt organizational structure. In: Proceedings of the 5th international conference on autonomous agents.Google Scholar
  13. Hunsberger, L., & Grosz, B. (2000). A combinatorial auction for collaborative planning. In: Proceedings of the fourth international conference on multi-agent systems (ICMAS-2000).Google Scholar
  14. Kitano, H. (2000). RoboCup rescue: a grand challenge for multi-agent systems. In: Proceedings of the fourth international conference on multi-agent systems (ICMAS-2000).Google Scholar
  15. Kraus, S., Shehory, O., & Taase, G. (2003). Coalition formation with uncertain heterogeneous information. In: Proceedings of the second international joint conference on autonomous agents and multiagent systems (AAMAS ’03).Google Scholar
  16. Nair, R., Tambe, M., & Marsella, S. (2002). Team formation for reformation. In: Proceedings of the AAAI spring symposium on intelligent distributed and embedded systems.Google Scholar
  17. Nair, R., Tambe, M., & Marsella, S. (2003). Role allocation and reallocation in multiagent teams: Towards a practical analysis. In: Proceedings of the second international joint conference on agents and multiagent systems (AAMAS).Google Scholar
  18. Nair, R., Tambe, M., & Marsella, S. (2003). Team formation for reformation in multiagent domains like RoboCupRescue. In: G. A. Kaminka, P.U. Lima & R. Rojas (Eds.), Proceedings of RoboCup-2002 international symposium. Springer Verlag.Google Scholar
  19. Platt, J. (1998). Fast training of support vector machines using sequential minimal optimization. In: B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods—support vector learning. MIT Press.Google Scholar
  20. Pynadath, D., & Tambe, M. (2002). Multiagent teamwork: Analyzing the optimality and complexity of key theories and models. In: Proceedings of the international conference on autonomous agents and multiagent systems (AAMAS ’02).Google Scholar
  21. Quinlan, R. (1993). C4.5: Programs for machine learning. Morgan Kaufmann Publishers.Google Scholar
  22. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduction. MIT Press.Google Scholar
  23. Swaminathan J.M., Smith S.F. and Sadeh N.M. (1998). Modeling supply chain dynamics: a multiagent approach. Decision Sciences 29: 607–632Google Scholar
  24. Tadokoro, S. (2003). RoboCupRescue robot league. In: G. A. Kaminka, P. U. Lima and R. Rojas (Eds.), Proceedings of RoboCup-2002 international symposium. Springer-Verlag.Google Scholar
  25. Tambe M. (1997). Towards flexible teamwork. Journal of Artificial Intelligence Research 7: 83–124Google Scholar
  26. Thadakamalla H.P., Raghaven U.N., Kumera S. and Albert R. (2004). Survivability of multiagent-based supply networks: a topological perspective. IEEE Intelligent Systems 19: 24–31CrossRefGoogle Scholar
  27. Watts D. and Strogatz S. (1998). Collective dynamics of ‘small-world’ networks. Nature 393: 440–442CrossRefGoogle Scholar
  28. Witten I.H., Frank E. (2000). Data mining: practical machine learning tools with Java implementations. Morgan Kaufmann.Google Scholar
  29. Zhen Z. and Webb G. (2000). Lazy learning of Bayesian rules. Machine Learning 41: 53–84CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Blazej Bulka
    • 1
  • Matthew Gaston
    • 1
  • Marie desJardins
    • 1
  1. 1.Department of Computer ScienceUniversity of Maryland, Baltimore CountyBaltimoreUSA

Personalised recommendations