Different approaches for modeling Swietenia macrophylla commercial volume in an Amazon agroforestry system

  • Cícero Jorge Fonseca DolácioEmail author
  • Thiago Wendling Gonçalves de Oliveira
  • Rudson Silva Oliveira
  • Clebson Lima Cerqueira
  • Luiz Rodolfo Reis Costa


The agroforestry systems (AFS) in the Amazon stand out in the national and international scenario due to the possibility of cultivating tropical forest species of high commercial value as the Brazilian mahogany, concomitantly, has sought to use more robust approaches to quantifying timber volume that does not require the same assumptions as traditional approaches. In this context, this study aimed to develop volumetric equations, by traditional approaches, by mixed modeling, and by machine learning techniques, that accurately estimate the commercial volume of Brazilian mahogany trees in an AFS in Amazon as well as verify whether there are differences in the estimates of these approaches by univariate analysis. For that, 108 trees were sampled in 36 circular plots of 500 m2 to estimate the commercial volume. Volumetric equations were developed from the fit of the Schumacher and Hall volumetric model and Kozak taper, by nonlinear regression, from the application of nonlinear mixed modeling in the most precise traditional model and training of artificial neural network (ANN) and supporting vector machines. The analysis of variance indicated that there was no significant difference between the mean values estimated by the equations developed by the different approaches tested in the inventoried individual data. Nevertheless, it is recommended to use the equation generated by ANN to perform estimations in other populations, because it presented more precise estimates in the test set.


Artificial neural network Brazilian mahogany Nonlinear mixed effects Nonlinear regression Support vector machine 



  1. Aguiar APD, Vieira ICG, Assis TO, Dalla-Nora EL, Toledo PM, Santos-Junior RAO, Batistella M, Coelho AS, Savaget EK, Aragão LEOC, Nobre CA, Ometto JPH (2016) Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon. Glob Change Biol 22:1821–1840. CrossRefGoogle Scholar
  2. Akindele SO, LeMay VM (2006) Development of tree volume equations for common timber species in the tropical rain forest area of Nigeria. For Ecol Manag 226:41–48. CrossRefGoogle Scholar
  3. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. CrossRefGoogle Scholar
  4. Araújo Júnior CA, Souza PDD, Assis ALD, Cabacinha CD, Leite HG, Soares CPB, Castro RVO (2019) Artificial neural networks, quantile regression, and linear regression for site index prediction in the presence of outliers. Pesqui Agropecu Bras 54:e00078. CrossRefGoogle Scholar
  5. Bartlett MS (1937) Properties of sufficiency and statistical tests. Proc R Soc Lond 160:268–282. CrossRefGoogle Scholar
  6. Bhering LL, Cruz CD, Peixoto LA, Rosado AM, Laviola BG, Nascimento M (2015) Application of neural networks to predict volume in Eucalyptus. Crop Breed Appl Biotechnol 15:125–131. CrossRefGoogle Scholar
  7. Binoti DHB, Binoti MLMS, Leite HG (2014a) Configuração de redes neurais artificiais para estimação do volume de árvores. Rev Ciência da Madeira 5:58–67. CrossRefGoogle Scholar
  8. Binoti MLMS, Binoti DHB, Leite HG, Lages S, Garcia R, Ferreira MZ et al (2014b) Redes neurais artificiais para estimação do volume de árvores. Rev Árvore 38:283–288. CrossRefGoogle Scholar
  9. Binoti DHB, Binoti MLMS, Leite HG, Andrade AV, Nogueira GS, Romarco ML et al (2016) Support vector machine to estimate volume of eucalypt trees. Rev Árvore 40:689–693. CrossRefGoogle Scholar
  10. Box GEP, Cox DR (1964) An analysis of transformations. J R Soc 26:211–252Google Scholar
  11. Çatal Y, Saplioğlu K (2018) Comparison of adaptive neuro-fuzzy inference system, artificial neural networks and non-linear regression for bark volume estimation in Brutian pine (Pinus brutia Ten.). Appl Ecol Environ Res 16:2015–2027. CrossRefGoogle Scholar
  12. Cochran WG (1965) Sampling techniques. Fundo de Cultura, Rio de JaneiroGoogle Scholar
  13. Collazo RA, Pessôa LAM, Bahiense L, Pereira BB, Reis AF, Silva NS (2016) A comparative study between artificial neural network and support vector machine for acute coronary syndrome prognosis. Pesqui Oper 6:321–343. CrossRefGoogle Scholar
  14. Correia J, Fantini A, Piazza G (2017) Equações volumétricas e fator de forma e de casca para florestas secundárias do litoral de Santa Catarina. Floresta e Ambiente 24:e20150237. CrossRefGoogle Scholar
  15. Crecente-Campo F, Tomé M, Soares P, Diéguez-Aranda U (2010) A generalized nonlinear mixed-effects height–diameter model for Eucalyptus globulus L. in northwestern Spain. For Ecol Manag 259:943–952. CrossRefGoogle Scholar
  16. Cunha TA, Finger CAG, Hasenauer H (2016) Tree basal area increment models for Cedrela, Amburana, Copaifera and Swietenia growing in the Amazon rain forests. For Ecol Manag 365:174–183. CrossRefGoogle Scholar
  17. Cysneiros VC, Pelissari AL, Machado SA, Figueiredo-Filho A, Souza L (2017) Modelos genéricos e específicos para estimativa do volume comercial em uma floresta sob concessão na Amazônia. Sci Forest 45:295–304. CrossRefGoogle Scholar
  18. Diamantopoulou MJ (2005) Artificial neural networks as an alternative tool in pine bark volume estimation. Comput Electron Agric 48:235–244. CrossRefGoogle Scholar
  19. Diamantopoulou MJ, Milios E (2010) Modelling total volume of dominant pine trees in reforestations via multivariate analysis and artificial neural network models. Biosyst Eng 105:306–315. CrossRefGoogle Scholar
  20. Drucker H, Burges CJC, Kaufman L, Smola A, Vapnik V (1996) Support vector regression machines. In: Mozer M, Jordan MI, Petsche T (eds) Advances in neural information processing systems, vol 9. Neural Information Processing Systems Foundation, Inc. Accessed 28 Jan 2019
  21. Egrioglu E, Yolcu U, Aladag CH, Bas E (2014) Recurrent multiplicative neuron model artificial neural network for non-linear time series forecasting. Proc Soc Behav Sci 109:1094–1100. CrossRefGoogle Scholar
  22. Ercanli I, Gunlu A, Başkent EZ (2015) Mixed effect models for predicting breast height diameter from stump diameter of Oriental beech in Göldağ. Sci Agric 72:245–251. CrossRefGoogle Scholar
  23. Fernandes AMV, Gama JRV, Rode R, Melo LO (2017) Equações volumétricas para Carapa guianensis Aubl. e Swietenia macrophylla King em sistema silvipastoril na Amazônia. Rev Nativa 1:73–77. CrossRefGoogle Scholar
  24. Free CM, Grogan J, Schulze MD, Landis RM, Brienen RJ (2017) Current Brazilian forest management guidelines are unsustainable for Swietenia, Cedrela, Amburana, and Copaifera: a response to da Cunha and colleagues. For Ecol Manag 386:81–83. CrossRefGoogle Scholar
  25. Fu L, Sun H, Sharma RP, Lei Y, Zhang H, Tang S (2013) Nonlinear mixed-effects crown width models for individual trees of Chinese fir (Cunninghamia lanceolata) in south-central China. For Ecol Manag 302:210–220. CrossRefGoogle Scholar
  26. Fu L, Zhang H, Lu J, Lou M, Wang G (2015) Multilevel nonlinear mixed-effect crown ratio models for individual trees of Mongolian Oak (Quercus mongolica) in Northeast China. PLoS ONE 10:e0133294. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fu L, Sharma RP, Hao K, Tang S (2017) A generalized interregional nonlinear mixed-effects crown width model for Prince Rupprecht larch in northern China. For Ecol Manag 389:364–373. CrossRefGoogle Scholar
  28. García Nieto PJ, Torres JM, Fernández MA, Galán CO (2012) Support vector machines and neural networks used to evaluate paper manufactured using Eucalyptus globulus. Appl Math Model 36:6137–6145. CrossRefGoogle Scholar
  29. Gimenez BO, Danieli FE, Oliveira CKA, Santos J, Higuchi N (2015) Volume equations for merchantable timber species of Southern Roraima State. Sci Forest 43:291–301Google Scholar
  30. Gimenez BO, Santos LT, Gebara J, Celes CHS, Durgante FM, Lima AJN et al (2017) Tree climbing techniques and volume equations for Eschweilera (Matá-Matá), a hyperdominant genus in the Amazon Forest. Forests 8:154–164. CrossRefGoogle Scholar
  31. Gouveia JF, Silva JAA, Ferreira RLC, Gadelha FHL, Lima Filho LMA (2015) Modelos volumétricos mistos em clones de Eucalyptus no polo gesseiro do Araripe, Pernambuco. Floresta 45:587–598. CrossRefGoogle Scholar
  32. Haggar J, Pons D, Saenz L, Vides M (2019) Contribution of agroforestry systems to sustaining biodiversity in fragmented forest landscapes. Agric Ecosyst Environ 283:106567. CrossRefGoogle Scholar
  33. Haykin S (2009) Neural networks and learning machines. Prentice Hall, PearsonGoogle Scholar
  34. Hilker T, Lyapustin AI, Tucker CJ, Hall FG, Myneni RB, Wang Y, Bi J, Moura YM, Sellers PJ (2014) Vegetation dynamics and rainfall sensitivity of the Amazon. Proc Natl Acad Sci 111:16041–16046. CrossRefPubMedGoogle Scholar
  35. Jelihovschi EG, Faria JC, Allaman IB (2014) ScottKnott: a package for performing the Scott–Knott clustering algorithm in R. Trends Appl Comput Math 15:3–17. CrossRefGoogle Scholar
  36. Jung Y (2018) Multiple predicting k-fold cross-validation for model selection. J Nonparametric Stat 30:197–215. CrossRefGoogle Scholar
  37. Kozak A, Munro DD, Smith JHG (1969) Taper functions and their application in forest inventory. For Chronic 45:278–283CrossRefGoogle Scholar
  38. Lanssanova LR, Silva FA, Schons CT, Pereira ACS (2018) Comparação entre diferentes métodos para estimativa volumétrica de espécies comerciais da Amazônia. BIOFIX Sci J 3:109–115. CrossRefGoogle Scholar
  39. Martins APM, Debastiani AB, Pelissari AL, Machado AS, Sanquetta CR (2017) Estimativa do afilamento do fuste de araucária utilizando técnicas de inteligência artificial. Floresta e Ambiente 24:e20160234. CrossRefGoogle Scholar
  40. Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F (2017) e1071: Misc functions of the department of statistics, probability theory group (formerly: E1071), TU Wien. Accessed 28 Jan 2019
  41. Miguel S, Guzmán G, Pukkala T (2013) A comparison of fixed- and mixed-effects modeling in tree growth and yield prediction of an indigenous neotropical species (Centrolobium tomentosum) in a plantation system. For Ecol Manag 291:249–258. CrossRefGoogle Scholar
  42. Milagres VAC, Machado ELM (2016) Potential distribution modeling of useful Brazilian trees with economic importance. J Agric Sci Technol 6:400–410. CrossRefGoogle Scholar
  43. Özçelik R, Diamantopoulou MJ, Brooks JR, Wiant HV Jr (2010) Estimating tree bole volume using artificial neural network models for four species in Turkey. J Environ Manag 91:742–753. CrossRefGoogle Scholar
  44. Pinheiro J, Bates D (2000) Mixed-effects models in S and S-PLUS. Springer, New YorkCrossRefGoogle Scholar
  45. Pinheiro J, Bates D, Debroy S, Sarkar D, R Core Team (2018) Nlme: linear and nonlinear mixed effects models. Accessed 15 Jan 2019
  46. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  47. Reis LP, Souza AL, Reis PCM, Mazzei L, Soares CPB, Torres CMME et al (2018) Estimation of mortality and survival of individual trees after harvesting wood using artificial neural networks in the amazon rain forest. Ecol Eng 112:140–147. CrossRefGoogle Scholar
  48. Ribaski J, Montoya LJ, Rodigheri HR (2001) Sistemas Agroflorestais: aspectos ambientais e socioeconômicos. Inf Agropecu 22:61–67. Accessed 14 July 2019
  49. Ribeiro RBS, Gama JRV, Melo LO (2014) Seccionamento para cubagem e escolha de equações de volume para a Floresta Nacional do Tapajós. Cerne 20:605–612. CrossRefGoogle Scholar
  50. Ribeiro RBS, Gama JRV, Souza AL, Leite HG, Soares CPB, Silva GF (2016) Methods to estimate the volume of stems and branches in the Tapajós National Forest. Rev Árvore 40:81–88. CrossRefGoogle Scholar
  51. Rocha JECD, Bentes A, Noronha NC, Gama MAP, Carvalho EJM, Silva AR, Santos CRCD (2016) Organic matter and physical-hydric quality of an oxisol under eucalypt planting and abandoned pasture. Cerne 22:381–388. CrossRefGoogle Scholar
  52. Sabastian GE, Kanowski P, Williams E, Roshetko JM (2018) Tree diameter performance in relation to site quality in smallholder timber production systems in Gunungkidul, Indonesia. Agrofor Syst 92:103–115. CrossRefGoogle Scholar
  53. Sakuragui CM, Calazans LSB, Vaz Stéfano M, Valente ASM, Maurenza D, Kutschenko DC, Prieto PV, Penedo TSA (2013) Meliaceae. In: Martinelli G, Moraes MA (eds) Livro vermelho da flora do Brasil, 1st edn. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, pp 697–701. Accessed 10 July 2019
  54. Sanquetta CR, Inoue MN, Corte APD, Netto SL, Mognon F, Wojciechowski J et al (2015) Modeling the apparent volume of bamboo culms from Brazilian plantation. Afr J Agric Res 10:3977–3986. CrossRefGoogle Scholar
  55. Sanquetta CR, Piva LRO, Wojciechowski J, Corte APD, Schikowski AB (2017) Volume estimation of Cryptomeria japonica logs in southern Brazil using artificial intelligence models. South For 80:29–36. CrossRefGoogle Scholar
  56. Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR et al (2013) Sistema brasileiro de classificação de solos. Embrapa, BrasíliaGoogle Scholar
  57. Santos PZF, Crouzeilles R, Sansevero JBB (2019) Can agroforestry systems enhance biodiversity and ecosystem service provision in agricultural landscapes? A meta-analysis for the Brazilian Atlantic Forest. For Ecol Manag 433:140–145. CrossRefGoogle Scholar
  58. Schikowski AB, Corte APD, Ruza MS, Sanquetta CR, Montaño RANR (2018) Modeling of stem form and volume through machine learning. An Acad Bras Ciênc 90:3389–3401. CrossRefPubMedGoogle Scholar
  59. Schumacher FX, Hall FS (1933) Logarithmic expression of timber-tree volume. J Agric Res 47:719–734Google Scholar
  60. Sharma RP, Bílek L, Vacek Z, Vacek S (2017) Modelling crown width–diameter relationship for Scots pine in the central Europe. Trees 31:1875–1889. CrossRefGoogle Scholar
  61. Sharma RP, Vacek Z, Vacek S (2018) Generalized nonlinear mixed-effects individual tree crown ratio models for Norway spruce and European beech. Forests 9:555. CrossRefGoogle Scholar
  62. Sheta AF, Ahmed SEM, Faris H (2015) A comparison between regression, artificial neural networks and support vector machines for predicting stock market index. Int J Adv Res Artif Intell 4:55–63. CrossRefGoogle Scholar
  63. Shiver BD, Brister GH (1992) Tree and stand volume functions for Eucalyptus saligna. For Ecol Manag 47:211–223. CrossRefGoogle Scholar
  64. Sileshi GW (2014) A critical review of forest biomass estimation models, common mistakes and corrective measures. For Ecol Manag 329:237–254. CrossRefGoogle Scholar
  65. Silva EN, Santana AC (2014) Modelos de regressão para estimação do volume de árvores comerciais, em florestas de Paragominas. Rev Ceres 61:631–636. CrossRefGoogle Scholar
  66. Silva MLM, Binoti DHB, Gleriani JM, Leite HG (2009) Ajuste do modelo de Schumacher e Hall e aplicação de redes neurais artificiais para estimar volume de árvores de eucalipto. Rev Árvore 33:1133–1139. CrossRefGoogle Scholar
  67. Silva GR, Viegas IJM, Silva Júnior ML, Gama MAP, Okumura RS, Frazão DAC, Matos GSB, Souza Junior JC, Lima EV, Galvao JR (2017) Growth and mineral nutrition of mahogany (‘Swietenia macrophylla’) seedlings subjected to lime in yellow Alic latosol. Aust J Crop Sci 11:1297–1303.;dn=404794058619857;res=IELHSS. Accessed 13 July 2019CrossRefGoogle Scholar
  68. Silva EC, Gama JRV, Rode R, Coelho ALM (2018a) Tree species growth in a silvipastoral system in Amazon. Afr J Agric Res 13:95–103. CrossRefGoogle Scholar
  69. Silva EM Jr, Maia RD, Cabacinha CD (2018b) Bee-inspired RBF network for volume estimation of individual trees. Comput Electron Agric 152:401–408. CrossRefGoogle Scholar
  70. Siqueira LS, Amaral HF, Correia LF (2017) O efeito do risco de informação assimétrica sobre o retorno de ações negociadas na BM&FBOVESPA. Rev Contab Finanç 28:425–444. CrossRefGoogle Scholar
  71. Soares FAAMN, Flôres EL, Cabacinha CD, Carrijo GA, Veiga ACP (2011) Recursive diameter prediction and volume calculation of eucalyptus trees using multilayer perceptron networks. Comput Electron Agric 78:19–27. CrossRefGoogle Scholar
  72. Souza CR, Azevedo CP, Rossi L (2008) Desempenho de espécies florestais para uso múltiplo na Amazônia. Sci Forest 36:7–14. Accessed 14 July 2019
  73. Steinwart I, Christmann A (2008) Support vector machines. Springer, New York. CrossRefGoogle Scholar
  74. Sturges HA (1926) The choice of a class interval. J Am Stat Assoc 21:65–66CrossRefGoogle Scholar
  75. Tavares Júnior IS, Rocha JEC, Ebling ÂA, Chaves AS, Zanuncio JC, Farias AA et al (2019) Artificial neural networks and linear regression reduce sample intensity to predict the commercial volume of Eucalyptus clones. Forests 10:268. CrossRefGoogle Scholar
  76. The Team (2017) h2o: r interface for H2O. Accessed 25 Jan 2019
  77. Vahedi AA (2016) Artificial neural network application in comparison with modeling allometric equations for predicting above-ground biomass in the Hyrcanian mixed-beech forests of Iran. Biomass Bioenerg 88:66–76. CrossRefGoogle Scholar
  78. Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10:988–999CrossRefGoogle Scholar
  79. Venables WN, Riplay BD (2002) Modern applied statistics with S. Springer, New York. CrossRefGoogle Scholar
  80. Viégas IDJM, Lobato ADS, Rodrigues MDS, Cunha RLM, Frazão DAC, Neto CFO, Conceição HEO, Guedes EMS, Alves GAR, Silva SP (2012) Visual symptoms and growth parameters linked to deficiency of macronutrients in young Swietenia macrophylla plants. J Food Agric Environ 10:937–940. Accessed 14 July 2019
  81. Winer BJ (1962) Single-factor experiments having repeated measures on the same elements. In: Winer BJ (ed) Statistical principles in experimental design. McGraw-Hill, New YorkCrossRefGoogle Scholar
  82. Yang Y, Huang S, Trincado G, Meng SX (2009) Nonlinear mixed-effects modeling of variable-exponent taper equations for lodgepole pine in Alberta, Canada. Eur J Forest Res 128:415–429. CrossRefGoogle Scholar
  83. Zou J, Han Y, So SS (2008) Overview of artificial neural networks. In: Livingstone DJ (ed) Artificial neural networks: methods in molecular biology. Humana Press, New York. CrossRefGoogle Scholar
  84. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Universidade Federal do Paraná - UFPRCuritibaBrazil
  2. 2.AMBFOREST Consultoria & EngenhariaAnanindeuaBrazil

Personalised recommendations