Advertisement

Intake, digestibility, and nitrogen balance in hair sheep fed Pennisetum purpureum supplemented with tropical tree foliage

  • Hassem Rodriguez-Villanueva
  • José Puch-Rodríguez
  • Juan Muñoz-González
  • José Sanginés-García
  • Edgar Aguilar-Urquizo
  • Alfonso Chay-Canul
  • Fernando Casanova-Lugo
  • Guillermo Jiménez-Ferrer
  • José Alayon-Gamboa
  • Angel Piñeiro-VázquezEmail author
Article

Abstract

The objective of this study was to evaluate the effects of inclusion of tropical tree foliage on intake, digestibility, and nitrogen balance in sheep fed with a diet based on fresh chopped Pennisetum purpureum. Four male Pelibuey sheep were used, with an average live weight of 22 ± 1.5 kg, distributed in a (4 × 4) Latin square design. Treatments were P. purpureum (T1), P. purpureum + Brosimum alicastrum (T2), P. purpureum + Guazuma ulmifolia (T3), and P. purpureum + Piscidia piscipula (T4). Tree foliage was incorporated into the ration at a proportion rate of 300 g/kg of dry matter (DM). Intake, digestibility, and nitrogen balance were measured during 24 h periods for 7 days. DM intake, organic matter (OM), and crude protein (CP) intakes were not affected (P > 0.05) by including tree foliage (an average of 892.7, 784.2, and 88.9 g/day, respectively). OM and CP digestibility was similar among treatments (P > 0.05). Nevertheless, digestibility of DM and NDF was lower (P < 0.05) in T2 and T4 than in T1 (DM = 570, 560, and 662.5 g/kg; NDF = 687.0, 650.9, and 772.1 g/kg, respectively). We conclude that providing 30% of the ration in DM of foliage of B. alicastrum, G. ulmifolia, and P. piscipula improves CP intake and reduces NDF intake, thereby improving digestibility of OM, CP in sheep, which indicates that the foliage of these tree species may be used as a protein supplement during the dry season in tropical regions.

Keywords

Dry season Microorganisms Secondary metabolites Supplementation 

Notes

Acknowledgements

We thank the National Technological Institute of Mexico for Financing the Project 6544.18-P, titled “Effect of intake of tropical trees on digestibility, pattern of ruminal fermentation, protozoan population, and production of enteric methane in hair sheep.”

Compliance with ethical standards

Conflict of interest

We certify that none of the authors have any conflict of interest with any funding organization regarding the material discussed in the manuscript.

References

  1. Albores-Moreno S, Alayón-Gamboa JA, Miranda-Romero LA, Alarcón-Zúñiga B, Jiménez-Ferrer G, Ku-Vera JC, Piñeiro-Vázquez AT (2018) Effect of tree foliage supplementation of tropical grass diet on in vitro digestibility and fermentation, microbial biomass synthesis and enteric methane production in ruminants. Trop Anim Health Prod.  https://doi.org/10.1007/s11250-018-1772-7 Google Scholar
  2. AOAC (1980) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Washington, p 70Google Scholar
  3. Archimède H, Eugène M, Marie-Magdeleine C, Boval M, Martin C, Morgavi DP, Lecomte P, Doreau M (2011) Comparison of methane production between C3 and C4 grasses and legumes. Anim Feed Sci Technol 166–167:59–64CrossRefGoogle Scholar
  4. Archimède H, Rira M, Barde DJ, Labirin F, Marie-Magdeleine C, Calif B, Periacarpin F, Rochette Y, Morgavi DP, Doreau M (2015) Potential of tannin-rich plants, Leucaena leucocephala, Glyricidia sepium and Manihot esculenta, to reduce enteric methane emissions in sheep. J Anim Physiol Anim Nutr 100(6):1149–1158.  https://doi.org/10.1111/jpn.12423 CrossRefGoogle Scholar
  5. Barros-Rodríguez M, Solorio-Sánchez J, Ku-Vera J, Ayala-Burgos A, Sandoval-Castro C, Solís-Pérez G (2012) Productive performance and urinary excretion of mimosine metabolites by hair sheep grazing in a silvopastoral system with high densities of Leucaena leucocephala. Trop Anim Health Prod 44(8):1873–1878.  https://doi.org/10.1007/s11250-012-0150 CrossRefGoogle Scholar
  6. Bhatta R, Enishi O, Yabumoto Y, Nonaka I, Takusari N, Higuchi K, Tajima K, Takenaka A, Kurihara M (2013) Methane reduction and energy partitioning in goats fed two concentrations of tannin from Mimosa spp. J Agric Sci 151:119–128CrossRefGoogle Scholar
  7. Bouazza L, Boufennara S, Bensaada M, Zeraib A, Rahal K, Saro C, Ranilla MJ, López S (2019) In vitro screening of Algerian steppe browse plants for digestibility, rumen fermentation profile and methane mitigation. Agrofor Syst.  https://doi.org/10.1007/s10457-019-00408-1 Google Scholar
  8. Cochran WG, Cox GM (1991) Diseños experimentales, 2nd edn. Trillas, Mexico, p 661Google Scholar
  9. Delgado DC, Galindo J, Ibett JCO, Dominguez M, Dorta N (2013) Suplementación con follaje de L. leucocephala. Su efecto en la digestibilidad aparente de nutrientes y producción de metano en ovinos. Rev Cub Cien Agri 47:267–271Google Scholar
  10. Enríquez-Quiroz JF, Meléndez-Nava NF, Bolaños-Aguilar ED, Esqueda-Esquivel VA (2011) Producción y Manejo de Forrajes Tropicales. Instituto Nacional de Investigaciones Agropecuarias y Forestales (INIFAP), Mexico City, p 405Google Scholar
  11. García E (1981) Modificaciones al sistema de clasificación climática de Kopen para adaptarlo a las condiciones de la República Mexicana. Instituto de Geografia, UNAM, MexicoGoogle Scholar
  12. Hristov AN, Hanigan M, Cole A, Todd R, McAllister TA, Ndegwa PM, Rotz A (2011) Review: ammonia emissions from dairy farms and beef feedlots. Can J Anim Sci 91:1–35CrossRefGoogle Scholar
  13. Jayanegara A, Leiber F, Kreuzer M (2012) Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J Anim Physiol Anim Nutr 96:365–375CrossRefGoogle Scholar
  14. Kaitho RJ, Umunna NM, Nsahlai IV, Tamminga S, vanBruchen J (1998) Utilization of browse supplements with varying tannin levels by Ethiopian Menz sheep. 2. Nitrogen metabolism. Agrofor Syst 39:161–173CrossRefGoogle Scholar
  15. Kongmanila D, Ledin I (2009) Chemical composition of some tropical foliage species and their intake and digestibility by goats. Asian Aust J Anim Sci 22(6):803–811CrossRefGoogle Scholar
  16. Ku-Vera JC, Ayala BAJ, Solorio SFJ, Briceño PEG, Ruiz GA, Piñeiro VAT, Barros RM, Soto AA, Espinoza HJC, Albores MS, Chay CAJ, Aguilar PCF, Ramírez AL (2013) Tropical tree foliages and shrubs as feed additives in ruminant rations. In: Fattah A, Salem ZM (eds) Nutritional strategies of animal feed additives. Nova Science Publishers, New York, pp 59–76Google Scholar
  17. Makkar HPS (2003) Quantification of tannins in tree and shrub foliage: a laboratory analysis. Kluwer Academic Publisher, DordrechtCrossRefGoogle Scholar
  18. McSweeney CS, Palmer B, McNeill DM, Krause DO (2001) Microbial interaction with tannins: nutritional consequences for ruminants. Anim Feed Sci Technol 91:83–93CrossRefGoogle Scholar
  19. Melesse A, Steingass H, Schollenberger M, Holstein J, Rodehutscord M (2017) Nutrient compositions and in vitro methane production profiles of leaves and whole pods of twelve tropical multipurpose tree species cultivated in Ethiopia. Agrofor Syst.  https://doi.org/10.1007/s10457-017-0110-9 Google Scholar
  20. Mengesha M, Bezabih M, Mekonnen K, Adie A, Duncan AJ, Thorne P, Tolera A (2017) Tagasaste (Chamaecytisus palmensis) leaf supplementation to enhance nutrient intake and production performance of sheep in the Ethiopian highlands. Trop Anim Health Prod 49:1415–1422.  https://doi.org/10.1007/s11250-017-1342-4 CrossRefGoogle Scholar
  21. Min BR, Solaiman S (2018) Comparative aspects of plant tannins on digestive physiology, nutrition and microbial community changes in sheep and goats: a review. J Anim Physiol Anim Nutr 102(05):1–13.  https://doi.org/10.1111/jpn.12938 CrossRefGoogle Scholar
  22. Min BR, Solaiman S, Shange R, Eun JS (2014) Gastrointestinal bacterial and methanogenic archaea diversity dynamics associated with condensed tannin-containing pine bark diet in goats using 16S Rdna amplicon pyrosequencing. Int J Microbiol.  https://doi.org/10.1155/2014/141909 Google Scholar
  23. Min BR, Solaiman S, Terrill T, Ramsay A, Mueller-Harvey I (2015) The effects of tannins-containing ground pine bark diet upon nutrient digestion, nitrogen balance, and mineral retention in meat goats. J Anim Sci Biotech 6:25.  https://doi.org/10.1186/s40104-015-0020-5 CrossRefGoogle Scholar
  24. Monforte-Briceño G, Sandoval-Castro C, Ramírez-Avilíes L, Capetillo-Leal M (2005) Defaunating capacity of tropical fodder trees: effects of polyethylene glycol and its relationship to in vitro gas production. Anim Feed Sci Technol 123(124):313–327CrossRefGoogle Scholar
  25. Mueller-Harvey I (2006) Unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agric 86:2010–2037CrossRefGoogle Scholar
  26. Naumann HD, Tedeschi LO, Zeller WE, Huntley Nichole F H (2017) The role of condensed tannins in ruminant animal production: advances, limitations and future directions. R Bras Zootec 46(12):929–949CrossRefGoogle Scholar
  27. Patra AK (2017) Accounting methane and nitrous oxide emissions, and carbon footprints of livestock food products in different states of India. J Clean Prod 162:678–686CrossRefGoogle Scholar
  28. Patra AK, Saxena J (2011) Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J Sci Food Agric 91:24–37CrossRefGoogle Scholar
  29. Piñeiro-Vázquez AT, Ayala-Burgos AJ, Chay-Canul AJ, Ku-Vera JC (2013) Dry matter intake and digestibility of rations replacing concentrates with graded levels of Enterolobium cyclocarpum in Pelibuey lambs. Trop Anim Health Prod 45:577–583CrossRefGoogle Scholar
  30. Piñeiro-Vázquez AT, Canul-Solis JR, Alayón-Gamboa JA, Chay-Canul AJ, Ayala-Burgos AJ, Aguilar-Pérez CA, Solorio-Sánchez FJ, Ku-Vera JC (2015) Potential of condensed tannins for the reduction of emissions of enteric methane and their effect on ruminant productivity. Arch Med Vet 47:263–272CrossRefGoogle Scholar
  31. Piñeiro-Vázquez AT, Canul-Solis JR, Alayon-Gamboa JA, Chay-Canul AJ, Ayala-Burgos AJ, Solorio-Sanchez FJ, Aguilar-Perez CF, Ku-Vera JC (2017a) Energy utilization, nitrogen balance and microbial protein supply in cattle fed Pennisetum purpureum and condensed tannins. J Anim Physiol Anim Nutr 101:159–169CrossRefGoogle Scholar
  32. Piñeiro-Vázquez AT, Canul-Solis JR, Casanova-Lugo F, Chay-Canul AJ, Ayala-Burgos A, Solorio-Sánchez FJ (2017b) Emisión de metano en ovinos alimentados con Pennisetum purpureum y árboles que contienen taninos condensados. Rev Mex Cienc Pecu 8:111–119Google Scholar
  33. Piñeiro-Vázquez AT, Jiménez-Ferrer GO, Chay-Canul AJ, Casanova-Lugo F, Díaz-Echeverría V, Ayala-Burgos AJ, Solorio-Sánchez FJ, Aguilar-Pérez CF, Ku-Vera JC (2017c) Intake, digestibility, nitrogen balance and energy utilization in heifers fed low-quality forage and Leucaena leucocephala. Anim Feed Sci Technol 228:194–201CrossRefGoogle Scholar
  34. Poppi DP, McLennan SR (1995) Protein and energy utilization by ruminants at pasture. J Anim Sci 73:278–290.  https://doi.org/10.2527/1995.731278x CrossRefGoogle Scholar
  35. Priolo A, Waghorn GC, Lanza M, Biondi L, Pennisi P (2000) Polyethylene glycol as a means for reducing the impact of condensed tannins in carob pulp: effects on lamb growth performance and meat quality. J Anim Sci 78:810–816CrossRefGoogle Scholar
  36. Raghuvansi SKS, Prasad R, Mishra AS, Chaturvedi OH, Tripathi MK, Misra AK, Saraswat BL, Jakhmola RC (2007) Effect of inclusion of tree leaves in feed on nutrient utilization and rumen fermentation in sheep. Bioresour Technol 98:511–517CrossRefGoogle Scholar
  37. Reed JD (1995) Nutritional toxicology of tannins and related polyphenols in forage legumes. J Anim Sci 73:1516–1528CrossRefGoogle Scholar
  38. Rira M, Morgavi DP, Genestoux L, Djibiri S, Sekhri I, Doreau M (2019) Methanogenic potential of tropical feeds rich in hydrolysable tannins. J Anim Sci 97:2700–2710.  https://doi.org/10.1093/jas/skz199 CrossRefGoogle Scholar
  39. Ruiz-Gonzáles A (2013) Balance de nitrógeno y composición de la leche de vacas alimentadas con Leucaena leucocephala. Master´s thesis. Universidad Autónoma de Yucatán. Merida, Yucatan, Mexico. 2013. p 57Google Scholar
  40. Sánchez NR, Ledin I (2006) Effect of feeding different levels of foliage from Cratylia argentea to creole dairy cows on intake, digestibility, milk production and milk composition. Trop Animal Health Prod 38(4):343–351.  https://doi.org/10.1007/s11250-006-4314-7 CrossRefGoogle Scholar
  41. SAS. Institute Inc., SAS, STAT (2006) Software, Ver. 9.00. SAS, CaryGoogle Scholar
  42. Schneider BH, Flatt WP (1975) The evaluation of feeds through digestibility experiments. The University of Georgia Press, Athens, p 423Google Scholar
  43. Soltan YA, Morsy AS, Sallam SMA, Louvandini H, Abdalla AL (2012) Comparative in vitro evaluation of forage legumes (prosopis, acacia, atriplex, and leucaena) on ruminal fermentation and methanogenesis. J Anim Feed Sci 21:759–772CrossRefGoogle Scholar
  44. Soltan YA, Morsy AS, Sallam SM, Lucas RC, Louvandini H, Kreuzer M, Abdalla AL (2013) Contribution of condensed tannins and mimosine to the methane mitigation caused by feeding Leucaena leucocephala. Arch Anim Nutr 67:169–184.  https://doi.org/10.1080/1745039X.2013.801139 CrossRefGoogle Scholar
  45. Tan HY, Sieo CC, Abdullah N, Liang JB, Huang XD, Ho YW (2011) Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim Feed Sci Technol 169:185–193.  https://doi.org/10.1016/j.anifeedsci.2011.07.004 CrossRefGoogle Scholar
  46. Tiemann TT, Lascano CE, Wettstein HR, Mayer AC, Kreuzer M, Hess HD (2008) Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal 2:790–799CrossRefGoogle Scholar
  47. Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583CrossRefGoogle Scholar
  48. Ventura-Cordero J, González-Pech PG, Torres-Acosta JFJ, Sandoval-Castro CA, Tun-Garrido J (2017) Sheep and goat browsing a tropical deciduous forest during the rainy season: why does similar plant species consumption result in different nutrient intake? Anim Prod Sci 59: 66–72.  https://doi.org/10.1071/AN16512 CrossRefGoogle Scholar
  49. Wahyuni S, Yulianti ES, Komara W, Yates NG, Obst JM, Lowry JB (1982) The performance of Ongole cattle offered either grass, sundried Leucaena leucocephala or varying proportions of each. Trop Anim Health Prod 7:275–283Google Scholar
  50. Yañez-Ruiz DR, Hart KJ, Martin-Garcia IA, Ramos S, Newbold CJ (2008) Diet composition at weaning affects the rumen microbial population and methane emissions by lambs. Aust J Exp Agric 48:186–188CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Hassem Rodriguez-Villanueva
    • 1
  • José Puch-Rodríguez
    • 1
  • Juan Muñoz-González
    • 2
  • José Sanginés-García
    • 1
  • Edgar Aguilar-Urquizo
    • 1
  • Alfonso Chay-Canul
    • 3
  • Fernando Casanova-Lugo
    • 4
  • Guillermo Jiménez-Ferrer
    • 5
  • José Alayon-Gamboa
    • 6
  • Angel Piñeiro-Vázquez
    • 1
    Email author
  1. 1.Tecnológico Nacional de México/I. T. ConkalConkalMexico
  2. 2.Facultad Maya de Estudios AgropecuariosUniversidad Autónoma de ChiapasCatazajáMexico
  3. 3.División Académica de Ciencias AgropecuariasUniversidad Juárez Autónoma de TabascoVillahermosaMexico
  4. 4.Tecnológico Nacional de México/I. T. Zona MayaOthón P. BlancoMexico
  5. 5.El Colegio de la Frontera Sur (ECOSUR)San Cristóbal de Las CasasMexico
  6. 6.El Colegio de la Frontera Sur, Unidad Campeche, MéxicoCiudad Industrial LermaMexico

Personalised recommendations