Advertisement

Characterization of teak pruning waste as an energy resource

  • Juan José Pérez Arévalo
  • Borja Velázquez MartíEmail author
Article

Abstract

Pruning agroforestry areas generates significant amounts of lignocellulosic biomass every year. The energy production potential of this biomass is unclear. The aim of this research was to quantify the amount of pruning residues generated from Teak (Tectona grandis), which are composed by mixtures of wood and leaves. An equation from a regression model has been proposed to quantify these residues with a adjusted coefficient of determination (r2) of 0.73. On the other hand, mixtures with different wood/leaf ratios of Teak were characterized by its higher heating value (HHV), elemental composition, structural and proximate analysis. This analysis allowed for further development of indirect HHV prediction models that are economically attractive and less time consuming than direct measurements. These models presented high coefficients of determination (r2 0.66–0.77). It has been determined that teak has the highest mean HHV of 17,373.7 kJ kg−1 dry. Elemental analysis showed the highest carbon content was about 46.2%. Mean hydrogen content was 7.5%. Leaf content has influenced on ash and nitrogen percentages. Nevertheless, the amount of nitrogen did not reach 1% for mixtures with leaf ratio lower than 50%. It is concluded that the proposed model can be used to predict the biomass of teak pruning grown in Aw climatic conditions. From the characterization of these pruned materials, the energy, residues and emissions can be estimated.

Keywords

Agroforestry Pruning waste HHV Elemental composition Bioenergy 

Notes

Acknowledgements

This work has been funded by Universidad Católica Santiago de Guayaquil through a research program coordinated by the Sistema de Investigación y Desarrollo (SINDE).

Author Contributions

BV-M conceived, designed the experiments and wrote the paper; JJPA performed the experiments and analyzed the data.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Acar S, Ayanoglu A (2012) Determination of higher heating values (HHVs) of biomass fuels. Energy Educ Sci Technol 28:749–758Google Scholar
  2. Beccali M, Columba P, D’Aleberti V (2009) Assessment of bioenergy potential in Sicily: a GIS-based support methodology. Biomass Bioenergy 33:79–87.  https://doi.org/10.1016/j.biombioe.2008.04.019 CrossRefGoogle Scholar
  3. Bernetti I, Fagarazzi C, Fratini R (2004) A methodology to analyze the potential development of biomass energy sector: an application in Tuscany. For Policy Econ 6:415–432.  https://doi.org/10.1016/j.forpol.2004.03.018 CrossRefGoogle Scholar
  4. Callejón-Ferre AJ, Carreño-Sánchez J, Suárez-Medina FJ, Pérez-Alonso J, Velázquez-Martí B (2014) Prediction models for higher heating value based on the structural analysis of the biomass of plant remains from the greenhouses of Almería (Spain). Fuel 116:377–387.  https://doi.org/10.1016/j.fuel.2013.08.023 CrossRefGoogle Scholar
  5. Chaturvedi R, Raghubanshi AS (2015) Allometric models for accurate estimation of aboveground biomass of teak in tropical dry forests of India. For Sci 61(5):938–949.  https://doi.org/10.5849/forsci.14-190 Google Scholar
  6. Christoforou EA, Fokaides PA, Kyriakides I (2014) Monte Carlo parametric modeling for predicting biomass calorific value. J Therm Anal Calorim 118:1789–1796.  https://doi.org/10.1007/s10973-014-4027-5 CrossRefGoogle Scholar
  7. Clutter J, Forston J, Pienaar L, Brister G, Bailey RL (1983) Timber management: a quantitative approach. Wiley, New York, ISBN-13: 978-0894647475Google Scholar
  8. Demirbaş A (2003) Relatioships between heating value and lignin, fixed carbon, and volatile material contents of shells from biomass products. Energy Sour 25:629–635.  https://doi.org/10.1080/00908310390212336 CrossRefGoogle Scholar
  9. EN 14918:2008. Solid biofuels—determination of the calorific value. European Committee for StandardizationGoogle Scholar
  10. EN-ISO 18122:2015. Solid biofuels. Determination of ash content. European Committee for StandardizationGoogle Scholar
  11. EN-ISO 18123:2015. Solid biofuels. Determination of the content of volatile matter. European Committee for StandardizationGoogle Scholar
  12. FAO (1994) Directrices sobre la planificación del aprovechamiento de la tierra. Colección FAO: Desarrollo, FAO 1994, Roma, Italia. 96 ppGoogle Scholar
  13. Gonzalez-Garcia S, Dias AC, Clermidy S, Benoist A, Maurel VB, Gasol AM, Gabarell X, Arroja L (2014) Comparative environmental and energy profiles of potential bioenergy production chains in Southern Europe. J Clean Prod 76:42–54CrossRefGoogle Scholar
  14. Gu L, Wu S, Li B, Wen H, Zhang D, Ye J, Wang L (2017) Persulfate oxidation assisted hydrochar production from Platanus Orientalis leaves: physiochemical and combustion characteristics. Biores Technol 244:517–524.  https://doi.org/10.1016/j.biortech.2017.07.173 CrossRefGoogle Scholar
  15. ISO-EN 18134-3:2017. Solid biofuels. Methods for moisture content determination. Method of oven drying. Part 3. Moisture of the sample for general analysis. European Committee for StandardizationGoogle Scholar
  16. Jones G, Joeffler D, Calkin D, Chung W (2010) Forest treatment residues for thermal energy compared with disposal by onsite burning: emissions and energy return. Biomass Bioenergy 34:737–746CrossRefGoogle Scholar
  17. Karmacharya S, Singh KP (1992) Biomass and net production of teak plantations in a dry tropical region in India. For Ecol Manag 55(1–4):233–247.  https://doi.org/10.1016/0378-1127(92)90103-G CrossRefGoogle Scholar
  18. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen–Geiger climate classification updated. Meteorol Z 15:259–263.  https://doi.org/10.1127/0941-2948/2006/0130 CrossRefGoogle Scholar
  19. Manzone M, Balsari P, Spinelli R (2013) Small-scale storage techniques for fuel chips from short rotation forestry. Fuel 109:687–692.  https://doi.org/10.1016/j.fuel.2013.03.006 CrossRefGoogle Scholar
  20. Minoche D, Herrero C, Dominguez-Dominguez M, Martinez-Zurimendi P (2017) Determining the site index of teak (Tectona grandis L.) plantations in Tabasco, Mexico. Cien Investig Agraria 44(2):154–167.  https://doi.org/10.7764/rcia.v44i2.1645 CrossRefGoogle Scholar
  21. Oluoti K, Richards T, Doddapaneni TRK, Kanagasabapathi D (2014) Evaluation of the pyrolysis and gasification kinetics of tropical wood biomass. BioResources 9(2):2179–2190CrossRefGoogle Scholar
  22. Partey ST, Oliver BF, Kwaku MY, Sarfo DA (2017) Comparative life cycle analysis of producing charcoal from bamboo, teak, and acacia species in Ghana. Int J Life Cycle Assess 22(5):758–766.  https://doi.org/10.1007/s11367-016-1220-8 CrossRefGoogle Scholar
  23. Pérez-Arévalo JJ, Velázquez-Martí B (2018) Evaluation of pruning residues of Ficus benjamina as a primary biofuel material. Biomass Bioenergy 108:217–223.  https://doi.org/10.1016/j.biombioe.2017.11.017 CrossRefGoogle Scholar
  24. Rosso L, Facciotto G, Bergante S, Vietto L, Nervo G (2013) Selection and testing of Populus alba and Salix spp. as bioenergy feedstock: preliminary results. Appl Energy 102:87–92.  https://doi.org/10.1016/j.apenergy.2012.07.042 CrossRefGoogle Scholar
  25. Saidur R, Abdelaziz EA, Demirbaş A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sustain Energy Rev 15:2262–2289.  https://doi.org/10.1016/j.rser.2011.02.015 CrossRefGoogle Scholar
  26. Sajdak M, Velázquez-Martí B (2012) Estimation of pruned biomass through the adaptation of classic dendrometry on urban forests: case study of Sophora japonica. Renew Energy 47:188–193.  https://doi.org/10.1016/j.renene.2012.04.002 CrossRefGoogle Scholar
  27. Sajdak M, Velázquez-Martí B, López-Cortés I, Estornell J, Fernández-Sarría A (2014a) Prediction models for estimating pruned biomass obtained from Platanus hispanica Münchh. used for material surveys in urban forests. Renew Energy 66:178–184.  https://doi.org/10.1016/j.renene.2013.12.005 CrossRefGoogle Scholar
  28. Sajdak M, Velázquez-Martí B, López-Cortés I (2014b) Quantitative and qualitative characteristics of biomass derived from pruning Phoenix canariensis hort. ex Chabaud. and Phoenix dactilifera L. Renew Energy 71:545–552.  https://doi.org/10.1016/j.renene.2014.06.004 CrossRefGoogle Scholar
  29. Savill P, Evans J, Auclair D, Falck J (1997) Plantation silviculture in Europe. Oxford University Press, Oxford, ISBN: 9780198549086Google Scholar
  30. Scarlat N, Blukdea V, Dallemand JF (2011) Assessment of the availability of agricultural and forest residues for bioenergy production in Romania. Biomass Bioenergy 35:1995–2005CrossRefGoogle Scholar
  31. UNE-CEN/TS 14780:2008 EX. Solid biofuels. Methods for the preparation of samples. AENOR, Madrid, Spain, 2008Google Scholar
  32. UNE-CEN/TS 15104:2008 EX. Solid biofuels. Determination of the total content of carbon, hydrogen and nitrogen. Instrumental methods. AENOR, Madrid, Spain 2008Google Scholar
  33. UNE-EN ISO 17225-3:2014. Solid biofuels. Fuel specifications and classes (Part. 3), AENOR, Madrid, Spain, 2011Google Scholar
  34. UNE-EN ISO 17225-4:2014 Solid biofuels. Specifications and fuel classes. Part 4: Wood chips for non-industrial use. AENOR, Madrid, Spain, 2012Google Scholar
  35. Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597.  https://doi.org/10.3168/jds.S0022-0302(91)78551-2 CrossRefGoogle Scholar
  36. Vargas-Moreno JM, Callejón-Ferre AJ, Pérez-Alonso J, Velázquez-Martí B (2012) A review of the mathematical models for predicting the heating value of biomass materials. Renew Sustain Energy Rev 16:3065–3083.  https://doi.org/10.1016/j.rser.2012.02.054 CrossRefGoogle Scholar
  37. Velázquez-Martí B (2017) Tratado sobre el aprovechamiento energético de la biomasa. Ed. Reverté. ISBN: 978-84-9048-626-9Google Scholar
  38. Velázquez-Martí B, Fernández-González E, López-Cortes I, Salazar-Hernández DM (2011a) Quantification of the residual biomass obtained from pruning of trees in Mediterranean olive groves. Biomass Bioenergy 35(2):3208–3217.  https://doi.org/10.1016/j.biombioe.2011.04.042 CrossRefGoogle Scholar
  39. Velázquez-Martí B, Fernández-González E, López-Cortes I, Salazar-Hernández DM (2011b) Quantification of the residual biomass obtained from pruning of trees in Mediterranean almond groves. Renew Energy 36:621–626.  https://doi.org/10.1016/j.renene.2010.08.008 CrossRefGoogle Scholar
  40. Velázquez-Martí B, Sajdak M, López-Cortés I, Callejón-Ferre AJ (2014) Wood characterization for energy application proceeding from pruning Morus alba L., Platanus hispanica Münchh. and Sophora japonica L. in urban áreas. Renew Energy 62:478–483.  https://doi.org/10.1016/j.renene.2013.08.010 CrossRefGoogle Scholar
  41. Velázquez-Martí B, Gaibor-Chávez J, Pérez-Pacheco S (2016) Quantification based on dimensionless dendrometry and drying of residual biomass from the pruning of orange trees in Bolivar province (Ecuador). Biofuels Bioprod Biorefineries 10:175–185.  https://doi.org/10.1002/bbb.1635 CrossRefGoogle Scholar
  42. Zhang L, Xu C, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy Conv Manag 51:969–982.  https://doi.org/10.1016/j.enconman.2009.11.038 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Facultad de IngenieríaUniversidad Católica de Santiago de GuayaquilGuayaquilEcuador
  2. 2.Departamento de Ingeniería Rural y AgroalimentariaUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations