Advertisement

Productivity of lactating goats under three grazing systems in the tropics of Mexico

  • M. Cardozo-Herrán
  • A. Ayala-Burgos
  • C. Aguilar-Pérez
  • L. Ramírez-Avilés
  • J. Ku-Vera
  • F. J. Solorio-SánchezEmail author
Article

Abstract

Although goat production in Southeast Mexico rely on native vegetation, information regarding the potential of this grazing system for milk production is scarce. The objective of this study was to evaluate the productivity of lactating goats under three grazing systems: a grass monoculture system (GMS), an intensive silvopastoral system (ISPS) and a native vegetation system (NVS). Thirty Creole female goats (weight 41.7 ± 3.8 kg) from 2.5 to 3 years old and 60 days postpartum were randomly assigned to the three grazing systems. The availability and chemical composition of forage, milk production and composition, blood urea, body condition and live weight were assessed. In the NVS, goats consumed more than 60 different plant types, but their diet consisted mainly of 13 identified plant species. Although forage availability was lower for the NVS, the edible plants of this system had higher crude protein and lower fiber compared to the GMS and the ISPS. Consequently, milk yield in the NVS was similar (P > 0.05) to the other systems and, compared with the GMS, had a higher content of protein, fat, lactose and minerals (P < 0.0001). Edible plants from the NVS also had a higher content of tannins, which probably helped to modulate rumen NH3-N, as reflected in the lower blood urea concentration in that system (P < 0.01). Due to its higher forage availability, the GMS showed the highest milk production per unit area, followed by the ISPS and NVS. It is concluded that NVS, the most biodiverse and extensive grazing system, supplies good quality forage to support high quality milk production similar to ISPS. In addition, it is associated with a low ecological impact.

Keywords

Grazing systems Lactating goats Milk composition Silvopastoral systems 

Notes

Acknowledgements

We would like thank the owners farm of “Mi Viejo San Juan” farm for allowing us to use their facilities and their goats which enabled us to carry out this experiment. The first author is grateful to the National Council of Science and Technology of Mexico (CONACYT) for the research grant that supported the postgraduate studies at the University of Yucatan, Mexico.

References

  1. Agrawal AR, Karim SA, Kumar Rajiv, Sahoo A, John PJ (2014) Sheep and goat production: basic differences, impact on climate and molecular tools for rumen microbiome study. Int J Curr Microbiol Appl Sci 3(1):684–706Google Scholar
  2. Améndola L, Solorio FJ, Ku-Vera JC, Améndola-Massiotti RD, Zarza H, Galindo F (2016) Social behavior of cattle in tropical silvopastoral and monoculture systems. Animal 10(05):863–867CrossRefGoogle Scholar
  3. AOAC (2005) Official Method 968.06 protein (crude) in animal feed: Dumas method, pp 25–26Google Scholar
  4. Ayala, A, Casanova F, Briceño EG (2013) Guía para el manejo del pastoreo en bovinos de carne en sistemas silvopastoriles intensivos (SSPI). En: Flores MX, Solorio B (eds) Ganadería sustentable: 2da etapa del proyecto estratégico de prioridad nacional, Michoacán de Ocampo, México, pp 189–203Google Scholar
  5. Beltrán S, Loredo C (2014) Establecimiento y uso de arbustivas forrajeras. En: Comité Nacional Sistema Producto Caprinos (ed), Tecnologías en apoyo a la caprinocultura, vol II, México DF, 2014 (Sistema Producto Caprinos), pp 17–20Google Scholar
  6. Cannas A, Pulina G (2008) Dairy goats feeding and nutrition. CABI, BolognaCrossRefGoogle Scholar
  7. Dumont B, Meuret M, Prod’hon M (1995) Direct observation of biting for studying grazing behavior of goats and llamas on garrigue rangelands. Small Rumin Res 16:27–35CrossRefGoogle Scholar
  8. Egea AV, Allegretti L, Paez Lama S, Sartor C, Fucili M, Passera C, Guevara JC (2014) Selective behavior of Creole goats in response to the functional heterogeneity of native forage species in the central Monte desert, Argentina. Small Rumin Res 120:90–99CrossRefGoogle Scholar
  9. Flores JS, Vermont-Ricalde RM, Kantún-Balam JM (2006) Leguminosae diversity in the Yucatan Peninsula and its importance for sheep and goat feeding. In: Sandoval-Castro CA, Hovell D, Torres-Acosta JFJ, Ayala-Burgos A (eds) Herbivores: assessment of intake, digestibility and the roles of secondary compounds, Nottingham, Reino Unido, BSAS, pp 291–299Google Scholar
  10. Giang NTT, Wanapat M, Phesatcha K, Kang S (2016) Level of Leucaena leucocephala silage feeding on intake, rumen fermentation, and nutrient digestibility in dairy steers. Trop Anim Health Prod 48(5):1057–1064CrossRefGoogle Scholar
  11. Gonzáles PG, Torres JFJ, Sandoval CA, Ventura J, Novelo L (2014) Aporte nutricional de las plantas consumidas por caprinos mediante el ramoneo/pastoreo de selva baja caducifolia. En: Comité Nacional Sistema Producto Caprinos (ed) Tecnologías en apoyo a la caprinocultura, vol II, México DF, Sistema Producto caprino, pp 47–50Google Scholar
  12. Gutiérrez JM (2014) Manejo de Ganado caprino en las praderas de humedad residual de la zona templada de México. En: Comité Nacional Sistema Producto Caprinos (ed) Tecnologías en apoyo a la caprinocultura, vol II, 2014 (Sistema Producto Caprinos, México DF), pp 41–45Google Scholar
  13. Hanson RW, Ballard FJ (1967) The relative significance of acetate and glucose as precursors for lipid synthesis in liver and adipose tissue from ruminants. Biochem J 105(2):529–536CrossRefGoogle Scholar
  14. Harmoney KR, Moore KJ, George JR, Brummer EC, Russell JR (1997) Determination of pasture biomass using four indirect methods. Agron J 89(4):665–672CrossRefGoogle Scholar
  15. Honhold N, Petit H, Halliwell RW (1989) Condition scoring scheme for small East African goats in Zimbabwe. Trop Anim Health Prod 21(2):121–127CrossRefGoogle Scholar
  16. INEGI (2009) Prontuario de información geográfica municipal de los Estados Unidos Mexicanos: Cansahcab, Yucatán Clave geoestadística 31009. InegiGoogle Scholar
  17. Kaneko JJ, Harvey JW, Bruss ML (2008) Clinical biochemistry of domestic animals. Academic Press, New YorkGoogle Scholar
  18. Ku-Vera JC, Ayala-Burgos AJ, Solorio-Sánchez FJ, Briceño-Poot EG, Ruiz-González A, Piñeiro-Vázquez AT, Barros-Rodríguez M, Soto-Aguilar A, Espinoza-Hernandez JC, Albores-Moreno S, Chay-Canul AJ (2013) Tropical tree foliages and shrubs as feed additives in ruminant rations. In: Salem AF (ed) Nutritional strategies of animal feed additives. Nova Scientist Publishers, New York, pp 59–76Google Scholar
  19. Li F, Li Z, Li S, Ferguson J, Cao Y, Yao J, Sun F, Wang X, Yang T (2014) Effect of dietary physically effective fiber on ruminal fermentation and the fatty acid profile of milk in dairy goats. J Dairy Sci 97(4):2281–2290CrossRefGoogle Scholar
  20. López-Santiago JG, Casanova-Lugo F, Villanueva-López G, Díaz-Echeverría VF, Solorio-Sánchez FJ, Martínez-Zurimendi P et al (2018) Carbon storage in a silvopastoral system compared to that in a deciduous dry forest in Michoacán, Mexico. Agrofor Syst 1:1–13.  https://doi.org/10.1007/s10457-018-0259-x Google Scholar
  21. Makkar HP (2003) Measurement of total phenolics and tannins using Folin–Ciocalteu method. In: Quantification of tannins in tree and shrub foliage. Springer, Dordrecht, pp 49–51.  https://doi.org/10.1007/978-94-017-0273-7_3
  22. Mertens DR (2002) Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. J AOAC Int 85(6):1217–1240Google Scholar
  23. Min BR, Solaiman S, Taha E, Lee J (2016) Effect of plant tannin-containing diet on fatty acid profile in meat goats. J Anim Nutr 1:1–5Google Scholar
  24. Mueller-Harvey I (2006) Unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agric 86(13):2010–2037CrossRefGoogle Scholar
  25. Murgueitio RE, Calle Z, Uribe F, Calle A, Solorio B (2011) Native trees and shrubs for the productive rehabilitation of cattle ranching lands. For Ecol Manag 261:1654–1663CrossRefGoogle Scholar
  26. National Research Council (NRC) (2007) Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. The National Academies Press, WashingtonGoogle Scholar
  27. Nsahlai IV, Goetsch AL, Luoa J, Johnson ZB, Mooree JE, Sahlu T, Ferrell CL, Galyean ML, Owens ML (2004) Metabolizable energy requirements of lactating goats. Small Rumin Res 53:253–273CrossRefGoogle Scholar
  28. Phesatcha K, Wanapat M (2017) Tropical legume supplementation influences microbial protein synthesis and rumen ecology. J Anim Physiol Anim Nutr 101(3):552–562CrossRefGoogle Scholar
  29. Price ML, Butler LG (1977) Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain. J Agric Food Chem 25(6):1268–1273CrossRefGoogle Scholar
  30. Rios G, Riley JA (1985) Preliminary studies on the utilization of the natural vegetation in the henequen zone of Yucatan for the production of goats, I. Selection and nutritive value of native plants. Trop Anim Prod 10:1–10Google Scholar
  31. Salinas H (2014) Producción de leche de cabra en praderas irrigadas en las regiones norte y centro de México. En: Comité Nacional Sistema Producto Caprinos (ed) Tecnologías en apoyo a la caprinocultura, vol II, 2014 (Sistema Producto Caprinos, México DF), pp 47–50Google Scholar
  32. Sánchez MD (1999) Sistemas agroforestales para intensificar de manera sostenible la producción animal en Latinoamérica tropical. En: Conferencia electrónica sobre Agroforestería para la producción animal en latinoamerica. Roma, Italia. http://www.fao.org/ag/aga/agap/frg/Agrofor1/Sanchez1.htm. Accessed 15 Jan 2018
  33. SAS (2009) Computer Program 9.0. SAS Institute, Cary, NCGoogle Scholar
  34. Silanikove N, Leitner G, Merin U, Prosser CG (2010) Recent advances in exploiting goat’s milk: quality, safety and production aspects. Small Rumin Res 89(2):110–124CrossRefGoogle Scholar
  35. SMN (2016) Sevicio Meteorológico Nacional. http://smn.cna.gob.mx/es/. Accessed 10 Oct 2018
  36. ‘t Mannetje L (2000) Measuring biomass of grassland vegetation. In: ‘t Mannetje L, Jones RM (eds) Field and laboratoty methods for grassland and animal production research. CABI Publishing, Wallingford, pp 151–177CrossRefGoogle Scholar
  37. Tejada de Hernandez IRMA (1992) Control de calidad y análisis de alimentos para animales. Sistema de educación continua, A. C. MéxicoGoogle Scholar
  38. Van Soest PV, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74(10):3583–3597CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • M. Cardozo-Herrán
    • 1
  • A. Ayala-Burgos
    • 1
  • C. Aguilar-Pérez
    • 1
  • L. Ramírez-Avilés
    • 1
  • J. Ku-Vera
    • 1
  • F. J. Solorio-Sánchez
    • 1
    Email author
  1. 1.Departamento de Nutrición Animal, Facultad de Medicina Veterinaria y ZootecniaUniversidad Autónoma de YucatánMéridaMexico

Personalised recommendations