Advertisement

Growth, forage yield and quality of Morus alba L. and Gliricidia sepium (Jacq.) Walp. in mixed and pure fodder bank systems in Yucatan, México

  • Olivier S. Ramos-Trejo
  • Jorge R. Canul-SolísEmail author
  • Azucena del R. Alvarado-Canché
  • Luis E. Castillo-Sánchez
  • Juan J. Sandoval-Gío
  • María J. Campos-Navarrete
  • Angel T. Piñeiro-Vázquez
  • Alfonso J. Chay-Canul
  • Fernando Casanova-Lugo
Article

Abstract

The main constraints in the ruminant production systems in the tropics are low availability and quality of forage during the dry season. An alternative that could mitigate the lack of food during periods of scarcity is the use of trees/shrubs in fodder banks. However, the growth and production response of these plants may be influenced by several factors. The aim of the study was to evaluate the total height of plants, forage yield and crude protein (CP) concentration of Morus alba and Gliricidia sepium in mixed and pure fodder bank systems with three planting densities (i.e., 10,000, 13,333 and 20,000 plants ha−1). A completely randomized design with a 3 × 3 factorial arrangement was used, with four replicates per treatment. The total height of plants was similar among fodder banks. However, G. sepium and mixed fodder banks had a greater forage yield (5.48 and 5.50 t DM ha−1, respectively) and more CP concentration (20.07 and 20.41%, respectively) than M. alba fodder banks. There was no significant effect of planting densities on total height of plants, forage yield and CP concentration, in fodder bank systems. There was no significant effect of interaction between fodder banks and planting densities on total height of plants and forage yield. However, the CP concentration was greater in the M. alba and mixed fodder banks in three planting densities, together with G. sepium fodder bank in a density of 10,000 plants ha−1, compared to G. sepium fodder banks at planting densities of 13,333 and 20,000 plants ha−1. We conclude that the mixed fodder bank of M. alba and G. sepium can increase the production and forage quality of the system.

Keywords

Cut and carry Growth response Monoculture Plant association Shrubs 

Notes

Acknowledgements

The authors are grateful to the Tecnológico Nacional de México (TecNM) for the project 6585.18-P, to carry out the present study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aldava-Navarro J, Casanova-Lugo F, Díaz-Echeverría VF, Escobedo-Cabrera A, Estrada-Medina H, Cetzal-Ix W, Basu SK (2017) Influence of Leucaena leucocephala(Lam.) de Wit (Fabaceae) on the forage yield and forage quality of tropical grasses Brachiaria brizantha (Hochst. ex A. Rich.) Stapf and Panicum maximum Jacq. (Poaceae). Int J Agric Sci 8(2):133–137Google Scholar
  2. AOAC (2012) Official method of analysis of AOAC international, 19th edn. AOAC International, Gaithersburg, pp 20–44Google Scholar
  3. Altieri MA, Nicholls CI (2003) Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil Tillage Res 72:203–2011.  https://doi.org/10.1016/S0167-1987(03)00089-8 CrossRefGoogle Scholar
  4. Bautista F, Palacio G (2005) Caracterización y manejo de los suelos de la península de Yucatán: implicaciones agropecuarias, forestales y ambientales. Campeche, México: Universidad Autónoma de Campeche, Mérida, Yucatán: Universidad Autónoma de Yucatán. Instituto de EcologíaGoogle Scholar
  5. Camacaro S, Baute N, Machado W (2003) Efecto de la poda y el pastoreo sobre la producción de biomasa de Gliricidia sepium. Zootec Trop 21(4):399–412Google Scholar
  6. Canul-Solis JR, Castillo-Sanchez LE, Escobedo-Mex JG, López-Herrera MA, Lara y Lara PE (2018) Forage yield and quality of Gliricidia sepium, Tithonia diversifolia and Cynodon nlemfuensis in monoculture and agroforestry systems. Agrociencia 52:853–862Google Scholar
  7. Casanova-Lugo F, Ramírez-Avilés L, Solorio-Sánchez FJ (2010) Effect of pruning interval on foliage and root biomass in forage tree species in monoculture and in association. Trop Subtrop Agroecosyst 12:33–41Google Scholar
  8. Casanova-Lugo F, Petit-Aldana J, Solorio-Sánchez FJ, Parsons D, Ramírez-Avilés L (2014) Forage yield and quality of Leucaena leucocephala and Guazuma ulmifolia in mixed and pure fodder Banks systems in Yucatan, Mexico. Agrofor Syst 88:29–39CrossRefGoogle Scholar
  9. Casanova-Lugo F, Cetzal-Ix W, Díaz-Echeverría VF, Chay-Canul AJ, Oros-Ortega I, Piñeiro-Vázquez AT, González-Valdivia NA (2018) Moringa oleifera Lam. (Moringaceae): árbol exótico con gran potencial para la ganadería ecológica en el trópicoGoogle Scholar
  10. Cuervo-Jiménez A, Narváez-Solarte W, Hahn von-Hessberg C (2003) Características forrajeras de la especie Gliricidia sepium (Jacq.) Stend, Fabaceae. Bol Cient Mus Hist Nat 17(1):33–45Google Scholar
  11. Dávila C, Urbano D (2002) Manejo de las asociaciones gramíneas-leguminosas arbóreas en la ganadería doble propósito. In: Tejos R, García W, Zambrano C, Mancilla L, Valbuena N (eds) VIII Seminario Manejo y Utilización de Pastos y Forrajes en Sistemas de Producción Animal. Universidad Nacional Experimental de los Llanos Occidentales “Ezequiel Zamora”, Barinas, Venezuela, pp 148–161Google Scholar
  12. García E (1973) Modificaciones al sistema de clasificación climática de Köppen. 2° de. Instituto de Geografía, Universidad Nacional Autónoma de México (UNAM), México, p 33. http://www.igeograf.unam.mx/sigg/utilidades/docs/pdfs/publicaciones/geo_siglo21/serie_lib/modific_al_sis.pdf
  13. Jayasundara HPS, Dennett MD, Sangakkara UR (1997) Biological nitrogen fixation in Gliricidia sepium and Leucaena leucocephala and transfer of fixed nitrogen to an associated grass. Trop Grassl 31:529–537Google Scholar
  14. Kabi F, Bareeba FB (2008) Herbage biomass production and nutritive value of mulberry (Morus alba) and Calliandra calothyrsus harvested at different cutting frequencies. Anim Feed Sci Technol 140:178–190.  https://doi.org/10.1016/j.anifeedsci.2007.02.011 CrossRefGoogle Scholar
  15. Kaitho RJ (1997) Utilization of browse supplements with varying tannin levels by Ethiopian Menz Sheep: 2. Nitrogen metabolism. Agrofor Syst 39:161–173CrossRefGoogle Scholar
  16. Ku-Vera J, Ayala-Burgos A, Solorio-Sánchez F, Briceño-Poot E, Ruiz-González A, Piñeiro-Vázquez AT, Barros-Rodrǵues M, Soto-Aguilar A, Espinoza Hernández J, Albores-Moreno S, Chay-Canul A, Aguilar-Pérez C, Ramírez-Avilés L (2013) Tropical tree foliage and shrubs as feed additives in ruminant rations. In: Salem AFZM (ed) Nutritional Strategies of Animal Feed Additives. Nova Science Pubishers Inc, New YorkGoogle Scholar
  17. Liyanage MS, Danso SKA, Jayasundara HPS (1994) Biological nitrogen fixation in four Gliricidia sepium genotypes. Plant Soil 161:267–274CrossRefGoogle Scholar
  18. Peter I, Lehmann J (2000) Pruning effects on root distribution and nutrient dynamics in an acacia hedgerow planting in northern Kenya. Agrofor Syst 50:59–75CrossRefGoogle Scholar
  19. Petit-Aldana JC (2011) Fodder tree species in association to improve productivity and nutrients cycling. University of Yucatan, Merida, Campus of biological and agricultural sciences, p 137Google Scholar
  20. Ramos-Trejo O, Canul-Solis JR, Ku-Vera JC (2016) Forage yield of Gliricidia sepium as affected by harvest height and frequency in Yucatan, Mexico. Rev Bio Cienc 4:116–123Google Scholar
  21. Reyes-García J (2009) Efecto de la edad de rebrote sobre el rendimiento, composición química y digestibilidad del forraje de árboles (monocultivos y asociados). Equiparabilidad de las técnicas In vitro e In situ para estimar la digestibilidad de la MS. Tesis de Maestría en Ciencias. Universidad Autónoma de Yucatán, Mexico, p 57Google Scholar
  22. SAS (1998) User’s guide: Statistic, version 6, 12th edn. SAS Inst. Inc., CaryGoogle Scholar
  23. Setua GC, Kar R, Satpathy B, Das NK, Ghosh JK, Saratchandra B (1999) Effect of vesicular arbuscular mycorrhiza on growth, leaf yield and phosphorus uptake in mulberry (Morus alba) under irrigated, alluvial soil conditions. Indian J Agric Sci 69:833–836Google Scholar
  24. Soliva CR, Zeleke AB, Clement C, Hess H, Fievez V, Kreuzer M (2008) In vitro screening of various tropical foliages, seeds, fruits and medicinal plants for low methane and high ammonia generating potentials in the rumen. Anim Feed Sci Technol 147:53–71.  https://doi.org/10.1016/j.anifeedsci.2007.09.009 CrossRefGoogle Scholar
  25. Sosa-Rodríguez AA, Ledea-Rodríguez JL, Estrada-Prado W, Molinet-Salas D (2017) Efecto de la distancia de siembra en variables morfoagronómicas de moringa (Moringa oleifera). Agron Mesoam 28:207–211CrossRefGoogle Scholar
  26. Sosa-Rubio EE, Pérez D, Ortega RL, Zapata BG (2004) Evaluación del Potencial forrajero de árboles y arbustos tropicales para la alimentación de ovinos. Técn Pecu Méx 42(2):129–144Google Scholar
  27. Van Noordwijk M, Purnomosidhi P (1995) Root architecture in relation to tree-soil-crop interactions and shoot pruning in agroforestry. Agrofor Syst 30:161–173CrossRefGoogle Scholar
  28. Van Noordwijk M, Hairiah K, Syekhfani MS, Flach EN (1991) Peltophorum pterocarpa (Dc.) Back (Caesalpiniaceae), a tree with a root distribution for alley cropping on acid soils in the humid tropics. In: Mc Michel BL, Persson H (eds) Plant roots and their environments. Amsterdam, Netherlands, pp 526–532Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Olivier S. Ramos-Trejo
    • 1
  • Jorge R. Canul-Solís
    • 1
    Email author
  • Azucena del R. Alvarado-Canché
    • 1
  • Luis E. Castillo-Sánchez
    • 1
  • Juan J. Sandoval-Gío
    • 1
  • María J. Campos-Navarrete
    • 1
  • Angel T. Piñeiro-Vázquez
    • 2
  • Alfonso J. Chay-Canul
    • 3
  • Fernando Casanova-Lugo
    • 4
  1. 1.División de Estudios de Posgrado e InvestigaciónTecnológico Nacional de México/Instituto Tecnológico de Tizimín, YucatánTizimínMexico
  2. 2.División de Estudios de Posgrado e InvestigaciónTecnológico Nacional de México/Instituto Tecnológico de ConkalConkalMexico
  3. 3.División Académica de Ciencias AgropecuariasUniversidad Juárez Autónoma de Tabasco, MéxicoVillahermosaMexico
  4. 4.División de Estudios de Posgrado e InvestigaciónTecnológico Nacional de México/Instituto Tecnológico de la Zona MayaOthón P. BlancoMexico

Personalised recommendations