Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Interactions between mineral fertilization and arbuscular mycorrhizal fungi improve nursery growth and drought tolerance of Prosopis alba seedlings

Abstract

Prosopis alba Griseb. (algarrobo blanco) is an important tree legume in semiarid regions of South America. Under field conditions, their seedlings are subjected to a wide range of environmental conditions that might produce stress, reducing their survival and/or growth. The aim of this work was to evaluate the combined effect of two native arbuscular mycorrhizal fungi (AMF) inocula and fertilization on growth variables of P. alba seedlings under nursery conditions and after drought stress. P. alba seedlings received different levels of basic fertilization (0%, 25% and 100%) and were inoculated with native AMF isolated from different rainfall regions of Parque Chaqueño Argentino: Colonia Benítez (CB, 1300 mm rainfall) and Padre Lozano (PL, 650 mm rainfall) or a mixture of both inocula (MIX), while the control group remained uninoculated. The combined application of native AMF and fertilization did not affect mycorrhizal colonization but allowed the formation of the different AMF structures. Moreover, when comparing the PL inoculum from a low rainfall region with other treatments, it significantly increased growth and development under nursery conditions and drought stress tolerance in the greenhouse. Therefore, AMF benefits for P. alba were related to inoculum source, being improved by the application of low fertilizer rates. This work supports the development of sustainable P. alba seedlings production and their field establishment under symbiotic conditions with native AMF.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12. https://doi.org/10.1007/s00253-009-2196-0

  2. Al-Karaki G, McMichael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14(4):263–269. https://doi.org/10.1007/s00572-003-0265-2

  3. Asmelash F, Bekele T, Birhane E (2016) The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front Microbiol 7:1095. https://doi.org/10.3389/fmicb.2016.01095

  4. Bashan Y, Salazar B, Puente ME (2009) Responses of native legume desert trees used for reforestation in the sonoran desert to plant growth-promoting microorganisms in screen house. Biol Fertil Soils 45:655–662. https://doi.org/10.1007/s00374-009-0368-9

  5. Beltrano J, Ronco MG (2008) Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and rewatering by the arbuscular mycorrhizal fungus Glomus clroideum: effect on growth and cell membrane stability. Braz J Plant Physiol 20(1):29–37. https://doi.org/10.1590/S1677-04202008000100004

  6. Berruti A, Borriello R, Orgiazzi A, Barbera AC, Lumini E, Bianciotto V (2014) Arbuscular mycorrhizal fungi and their value for ecosystem management. In: Grillo O (ed) Biodiversity—the dynamic balance of the planet. In Tech, pp 159–191. https://www.intechopen.com/books/biodiversity-the-dynamic-balance-of-the-planet/arbuscular-mycorrhizal-fungi-and-their-value-for-ecosystem-management. Accessed 08 Feb 2018

  7. Biermann B, Linderman RG (1983) Effect of container plant growth medium and fertilizer phosphorus on establishment and host growth response to vesicular-arbuscular mycorrhizal. J Am Soc Hort Sci 108(6):962–971

  8. Cabello MN (1997) Hydrocarbon pollution: its effect on native arbuscular mycorrhizal fungi (AMF). FEMS Microbiol Ecol 22(3):233–236

  9. Cruz Hernández Y, Garcia Rubido M, León González Y, Acosta Aguiar Y (2014) Influencia de la aplicación de micorrizas arbusculares y la reducción del fertilizante mineral en plántulas de tabaco. Cultivos Tropicales 35(1):21–24

  10. Irrazabal G, Schalamuk S, Velázquez MS, Cabello M (2005) Especies de hongos formadores de micorrizas arbusculares: nuevas citas para la República Argentina. Bol Soc Argent Bot 40(1–2):17–22

  11. Jacobs DF, Landis TD (2009) Fertilization. In: Dumroese RK, Luna T, Landis TD (eds) Nursery manual for native plants: a guide for tribal nurseries, volume 1: nursery management. Agriculture Handbook 730, Department of Agriculture, Forest Service, Washington, pp 201–215

  12. Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84(9):2292–2301. https://doi.org/10.1890/02-0413

  13. Linderman RG, Davis EA (2004) Evaluation of commercial inorganic and organic fertilizer effects on arbuscular mycorrhizae formed by Glomus intraradices. HortTechnol 14(2):196–202

  14. Liu Y, Shi G, Mao L, Cheng G, Jiang S, Ma X, An L, Du G, Johnson NC, Feng H (2012) Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytol 194:523–535. https://doi.org/10.1111/j.1469-8137.2012.04050.x

  15. Martin CA, Stutz JC (1994) Growth of argentine mesquite inoculated with vesicular-arbuscular mycorrhizal fungi. J Arboric 20(2):134–139

  16. Martínez Rojas L (2014) Respuesta del cultivo de pimentón (Capsicum annuum) a la inoculación con Glomus manihotis y Acaulospora lacunosa en suelo con niveles alto de fosforo. Respuestas 19(1):27–38. https://doi.org/10.22463/0122820X.6

  17. Marulanda A, Azcón R, Ruiz-Lozano JM (2003) Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol Plant 119(4):526–533. https://doi.org/10.1046/j.1399-3054.2003.00196.x

  18. Marulanda A, Barea JM, Azcón R (2006) An indigenous drought-tolerant strain of Glomus intraradices associated with native bacterium improves water transport and root development in Retama sphaerocarpa. Microb Ecol 52:670–678. https://doi.org/10.1007/s00248-006-9078-0

  19. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new methods which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x

  20. Neuhauser C, Fargione JE (2004) A mutualism–parasitism continuum model and its application toplant–mycorrhizae interactions. Ecol Model 177:337–352. https://doi.org/10.1016/j.ecolmodel.2004.02.010

  21. Pausas JG, Pratt RB, Keeley JE, Jacobsen AL, Ramirez AR, Vilagrosa A, Paula S, Kaneakua-Pia IN, Davis SD (2016) Towards understanding resprouting at the global scale. New Phytol 209:945–954. https://doi.org/10.1111/nph.13644

  22. Philips J, Hayman D (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161. https://doi.org/10.1016/S0007-1536(70)80110-3

  23. Rapparini F, Peñuelas J (2014) Mycorrhizal fungi to alleviate drought stress on plant growth. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 21–42

  24. Ruiz-Lozano JM, Azcón R, Gomez M (1995) Effects of arbucular-mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. J Appl Environ Microbiol 61(2):456–460

  25. Sagadin MB, Monteoliva MI, Luna CM, Cabello MN (2018) Diversidad e infectividad de hongos micorrícicos arbusculares nativos provenientes de algarrobales del Parque Chaqueño argentino con caracteríticas edafoclimáticas contrastantes. Agriscientia 35(2):19–33

  26. Salifu KF, Jacobs DF (2006) Characterizing fertility targets and multi-element interactions in nursery culture of Quercus rubra seedlings. Ann For Sci 63:231–237. https://doi.org/10.1051/forest:2006001

  27. Salto CS, Harrand L, Oberschelp GPJ, Ewens M (2016) Crecimiento de plantines de Prosopis alba en diferentes sustratos, contenedores y condiciones de vivero. Bosque. https://doi.org/10.4067/S0717-92002016000300010

  28. Salto CS, Melchiorre M, Oberschelp GPJ, Pozzi E, Harrand L (2017) Effect of fertilization and inoculation with native rhizobial strains on growth of Prosopis alba seedlings under nursery conditions. Agrofor Syst. https://doi.org/10.1007/s10457-017-0156-8

  29. Sieverding E (1991) Vesicular arbuscular mycorrhizae management in tropical agroecosystem. Technical Cooperation, Federal Republic of Germany

  30. Su YY, Guo LD (2007) Arbuscular mycorrhizal fungi in non-grazed, restored and over-grazed grassland in the Inner Mongolia steppe. Mycorrhiza 17:689–693. https://doi.org/10.1007/s00572-007-0151-4

  31. Velazquez S, Cabello M (2011) Occurrence and diversity of arbuscular mycorrhizal fungi en trap cultures from El Palmar National Park soils. Eur J Soil Biol 47(4):230–235

  32. Villagra PE, Vilela A, Giordano C, Alvarez JA (2010) Ecophysiology of Prosopis species from the arid lands of Argentina: What do we know about adaptation to stressful environments? In: Ramawat KG (ed) Desert plants: biology and biotechnology. Springer, London, pp 321–340

  33. Wilkinson KM (2009) Benefical microorganisms. In: Dumroese RK, Luna T, Landis TD (eds) Nursery manual for native plants: a guide for tribal nurseries, volume 1: nursery management. Agriculture Handbook 730, Department of Agriculture, Forest Service, Washington, pp 247–261

  34. Yang W, Zheng Y, Gao C, He X, Ding Q, Kim Y, Rui R, Wang S, Guo L (2013) The arbuscular mycorrhizal fungal community response to warming and grazing differs between soil and roots on the Qinghai-Tibetan Plateau. PLoS ONE 8(9):e76447. https://doi.org/10.1371/journal.pone.0076447

  35. Yong LJ, Shi GX, Mao L, Cheng G, Jiang SF, Feng HY (2011) Effects of fertilization on arbuscular mycorrhizal fungi in Elymus nutans roots. Chin J Appl Ecol 22(12):3131–3137

  36. Zeppel MJB, Harrison SP, Adams HD, Kelley DI, Li G, Tissue DT, Dawson TE, Fensham R, Medlyn BE, Palmer A, West AG, McDowell NG (2015) Drought and resprouting plants. New Phytol 206:583–589

Download references

Acknowledgements

This work was supported by National Institute of Agricultural Technology (INTA): PReT-ERIOS 1263305, INTA-PNFOR 1104073, INTA-PNFOR 1104063 and INTA-PNAGUA 1133032; National Promotion Agency Science and Technology (ANPCyT) through the Fund for Scientific Research and Technology (FONCyT): Projects of Scientific and Technological Research (PICT) 2012-0339. We also like to thanks to Jorgelina Brasca for manuscript language editing, Ing. Ingrid Teich for her contributions to statistical analysis of drought data and all the technical staff who helped with the establishment and maintenance of the nursery test.

Author information

Correspondence to Carla S. Salto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salto, C.S., Sagadin, M.B., Luna, C.M. et al. Interactions between mineral fertilization and arbuscular mycorrhizal fungi improve nursery growth and drought tolerance of Prosopis alba seedlings. Agroforest Syst 94, 103–111 (2020). https://doi.org/10.1007/s10457-019-00371-x

Download citation

Keywords

  • “Algarrobo blanco”
  • Mineral nutrition
  • Mycorrhizae
  • Nursery
  • Water stress