Advertisement

Modelling tree density effects on provisioning ecosystem services in Europe

  • Josep Crous-DuranEmail author
  • Anil R. Graves
  • Joana A. Paulo
  • Jaconette Mirck
  • Tânia S. Oliveira
  • Sonja Kay
  • Silvestre García de Jalón
  • João H. N. Palma
Article

Abstract

Agroforestry systems, in which trees are integrated in arable or pasture land, can be used to enable sustainable food, material, and energy production (i.e. provide provisioning ecosystem services) whilst reducing the negative environmental impacts associated with farming. However, one constraint on the uptake of agroforestry in Europe is a lack of knowledge on how specific agroforestry designs affect productivity. A process-based biophysical model, called Yield-SAFE, was used: (1) to quantify the food, material and biomass energy production of four contrasting case study systems in Europe in a common energy unit (MJ ha−1), and (2) to quantify how tree density determined the supply of provisioning ecosystem services. The Yield-SAFE model was calibrated so that simulated tree and crop growth fitted observed growth data for reference monoculture forestry, pasture, and arable systems. The modelled results showed that including trees in pasture or arable systems increased the overall accumulated energy of the system in comparison with monoculture forestry, pasture, and arable systems, but that the accumulated energy per tree was reduced as tree density increased. The greatest accumulated energy occurred in the highest tree density agroforestry system at all the case study sites. This suggests that the capture of environmental resources, such as light and water, for obtaining provisioning services is most effective in high density agroforestry systems. Further modelling should include tree canopy effects on micro-climatic and the impact this has on pasture, crop, and livestock yields, as well as the impact of tree density on the economic value and management of the different systems.

Keywords

Yield-SAFE Agroforestry systems Montado Dehesa Short rotation coppice Silvoarable Silvopasture 

Notes

Acknowledgements

We acknowledge the financial support provided by the Portuguese Foundation for Science and Technology (FCT) through the scholarship (SFRH/BD/52691/2014) and PEST (UID/AGR/00239/2013), and the European Community’s Seventh Framework Programme under Grant Agreement No. 613520 (Project AGFORWARD). We would like also to thank the suggestions from the reviewers, whose comments greatly improve the manuscript. 

References

  1. Benavides R, Douglas GB, Osoro K (2009) Silvopastoralism in New Zealand: review of effects of evergreen and deciduous trees on pasture dynamics. Agrofor Syst 76:327–350.  https://doi.org/10.1007/s10457-008-9186-6 CrossRefGoogle Scholar
  2. Burgess PJ, Rosati A (2018) Advances in European agroforestry: results from the AGFORWARD project. Agrofor Syst 92:801–810.  https://doi.org/10.1007/s10457-018-0261-3 CrossRefGoogle Scholar
  3. Burgess PJ, Incoll LD, Corry DT, Beaton A, Hart BJ (2005) Poplar (Populus spp.) growth and crop yields in a silvoarable experiment at three lowland sites in England. Agrofor Syst 63:157–169.  https://doi.org/10.1007/s10457-004-7169-9 CrossRefGoogle Scholar
  4. Burgess PJ, Crous-Duran J, den Herder M, Dupraz C, Fagerholm N, Freese D, Garnett K, Graves A, Hermansen J, Liagre F, Mirck J, Moreno G, Mosquera-Losada M, Palma JHN, Pantera A, Plieninger T, Upson M (2015) AGFORWARD project periodic report: January to December 2014, 95 p. Cranfield University, Cranfield (UK). AGFORWARD project. http://hdl.handle.net/10400.5/9199. Accessed 17 Oct 2018
  5. Chirko CP, Gold MA, Nguyen PV, Jiang JP (1996) Influence of direction and distance from trees on wheat yield and photosynthetic photon flux density (Qp) in a Paulownia and wheat intercropping system. For Ecol Manage 83:171–180.  https://doi.org/10.1016/0378-1127(96)03721-8 CrossRefGoogle Scholar
  6. Coe R, Sinclair F, Barrios E (2014) Scaling up agroforestry requires research ‘in’ rather than ‘for’ development. Curr Opin Environ Sustain 6:73–77.  https://doi.org/10.1016/j.cosust.2013.10.013 CrossRefGoogle Scholar
  7. Cubera E, Nunes JM, Madeira M, Gazarini L (2009) Influence of Quercus ilex trees on herbaceous production and nutrient concentrations in southern Portugal. J Plant Nutr Soil Sci 172:565–571.  https://doi.org/10.1002/jpln.200800191 CrossRefGoogle Scholar
  8. Cuddington K, Fortin MJ, Gerber LR, Hastings A, Liebhold A, O’Connor M, Ray C (2013) Process-based models are required to manage ecological systems in a changing world. Ecosphere 4:art20.  https://doi.org/10.1890/es12-00178.1 CrossRefGoogle Scholar
  9. den Herder M, Moreno G, Mosquera-losada RM, Palma JHN, Sidiropoulou A, Santiago-Freijanes JJ, Crous-duran J, Paulo JA, Tomé M, Pantera A, Papanastasis VP, Mantzanas K, Pachana P, Papadopoulos A, Plieninger T, Burgess P (2017) Current extent and stratification of agroforestry in the European Union. Agric Ecosyst Environ 241:121–132.  https://doi.org/10.1016/j.agee.2017.03.005 CrossRefGoogle Scholar
  10. Eastham J, Rose CW, Charles Edwards DA et al (1990) Planting density effects of water use efficiency of trees and pasture in an agroforestry experiment. N Z J For Sci 20:39–53Google Scholar
  11. Garrity DP, Akinnifesi FK, Ajayi OC, Weldesemayat SG, Mowo JG, Kalinganire A, Larwanou M, Bayala J (2010) Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Secur 2:197–214.  https://doi.org/10.1007/s12571-010-0070-7 CrossRefGoogle Scholar
  12. Glover JD, Reganold JP, Cox CM (2012) Agriculture: plant perennials to save Africa’s soils. Nature 489:359–361.  https://doi.org/10.1038/489359a CrossRefPubMedGoogle Scholar
  13. Godinho S, Guiomar N, Machado R, Santos P, Sá-Sousa P, Fernandes JP, Neves N, Pinto-Correia T (2014) Assessment of environment, land management and spatial variables on recent changes in montado land cover in southern Portugal. Agrofor Syst.  https://doi.org/10.1007/s10457-014-9757-7 CrossRefGoogle Scholar
  14. Graves AR, Burgess PJ, Palma JHN, Herzog F, Moreno G, Bertomeu M, Dupraz C, Liagre F, Keesman K, van der Werf W, de Nooy AK, van den Briel JPP (2007) Development and application of bio-economic modelling to compare silvoarable, arable, and forestry systems in three European countries. Ecol Eng 29:434–449.  https://doi.org/10.1016/j.ecoleng.2006.09.018 CrossRefGoogle Scholar
  15. Graves AR, Burgess PJ, Palma J, Keesman K, Van der Werf W, Dupraz C, van Keulen H, Herzog F, Mayus M (2010) Implementation and calibration of the parameter-sparse Yield-SAFE model to predict production and land equivalent ratio in mixed tree and crop systems under two contrasting production situations in Europe. Ecol Model 221:1744–1756CrossRefGoogle Scholar
  16. Gruenewald H, Brandt BKV, Schneider BU, Bens O, Kendzia G, Hüttl RF (2007) Agroforestry systems for the production of woody biomass for energy transformation purposes. Ecol Eng 29:319–328.  https://doi.org/10.1016/j.ecoleng.2006.09.012 CrossRefGoogle Scholar
  17. Herzog F (1998) Streuobst: a traditional agroforestry system as a model for agroforestry development in temperate Europe. Agrofor Syst 42:61–80.  https://doi.org/10.1023/A:1006152127824 CrossRefGoogle Scholar
  18. Hodgson J (1990) Grazing Management: science into practice. longman handbooks in agriculture. Longman Scientific & Technical, HarlowGoogle Scholar
  19. IAASTD (2009) Synthesis report: agriculture at a crossroads. International Assessment of Agricultural Science and Technology for Development. Island Press, Washington DC. http://apps.unep.org/redirect.php?file=/publications/pmtdocuments/-Agriculture%20at%20a%20crossroads%20-%20Synthesis%20report-2009Agriculture_at_Crossroads_Synthesis_Report.pdf. Accessed 17 Oct 2018
  20. Jose S, Gillespie AR, Pallardy SG (2004) Interspecific interactions in temperate agroforestry. Agrofor Syst 61–62:237–255.  https://doi.org/10.1023/B:AGFO.0000029002.85273.9b CrossRefGoogle Scholar
  21. Kanzler M, Mirck J (2017) Lesson learnt report: alley cropping in Germany. AGFORWARD project. BTU Cottbus-Senftenberg, 03046 Cottbus, Germany. https://www.agforward.eu/index.php/en/alley-cropping-systems-in-germany.html?file=files/agforward/documents/LessonsLearnt/WP4_D_Alley_cropping_lessons-learnt_final.pdf. Accessed 17 Oct 2018
  22. López-Díaz ML, Rolo V, Benítez R, Moreno G (2015) Shrub encroachment of Iberian dehesas: implications on total forage productivity. Agrofor Syst 89:587–598.  https://doi.org/10.1007/s10457-015-9793-y CrossRefGoogle Scholar
  23. Mirck J, Kanzler M, Quinkenstein A (2016) Agforward project system Report: Alley Cropping in Germany. AGFORWARD project. BTU Cottbus-Senftenberg, 03046 Cottbus, Germany. https://www.agforward.eu/index.php/pt/integracao-de-arvores-e-culturas-arvenses-alemanha-862.html?file=files/agforward/documents/WP4%20Initial%20Stakeholder%20report%20BTU%20Arable%20final.pdf. Accessed 17 Oct 2018
  24. Moreno G, Aviron S, Berg S, Crous-Duran J, Franca A, García de Jalón S, Hartel T, Mirck J, Pantera A, Palma JHN, Paulo JA, Re GA, Sanna F, Thenail C, Varga A, Viaud V, Burgess PJ (2018) Agroforestry systems of high nature and cultural value in Europe: provision of commercial goods and other ecosystem services. Agrofor Syst 92:877–891.  https://doi.org/10.1007/s10457-017-0126-1 CrossRefGoogle Scholar
  25. Olea L, San Miguel-Ayanz A (2006) The Spanish dehesa, a traditional Mediterranean silvopastoral system. In: 21st General meeting of the European Grassland Federation, Badajoz, SpainGoogle Scholar
  26. Palma JHN (2017) Clipick–climate change web picker. A tool bridging daily climate needs in process based modelling in forestry and agriculture. For Syst 26:1–4.  https://doi.org/10.5424/fs/2017261-10251 CrossRefGoogle Scholar
  27. Palma JHN, Graves AR, Burgess PJ, van der Werf W, Herzog F (2007) Integrating environmental and economic performance to assess modern silvoarable agroforestry in Europe. Ecol Econ 63:759–767.  https://doi.org/10.1016/j.ecolecon.2007.01.011 CrossRefGoogle Scholar
  28. Palma JHN, Graves AR, Crous-Duran J, Upson M, Paulo JA, Oliveira TS, Garcia de Jalón S, Burgess PJ (2016). Yield-SAFE model improvements. Report for Milestone 29 (6.4) of the AGFORWARD project, Lisboa. http://hdl.handle.net/10400.5/12337. Accessed 17 Oct 2018
  29. Palma JHN, Oliveira TSO, Crous-Duran J, Graves AR, Garcia de Jalón S, Upson M, Giannitsopoulos M, Burgess PJ, Paulo JA, Tomé M, Ferreiro-Dominguéz N, Mosquera-Losada MR, Gonzalez-Hernández P, Kay S, Mirk J, Kanzler M, Smith J, Moreno G, Pantera A, Mantovani D, Rosati A, Luske B, Hermansen J (2017) Deliverable 6.17 (6.2): modelled agroforestry outputs at field and farm scale to support biophysical and environmental assessments AGFORWARD project. 18 October 2017, 162 p. http://hdl.handle.net/10400.5/14799. Accessed 17 Oct 2018
  30. Pisanelli A, Paris P, Marandola D, Romano R, Marongiu S, Rosati A (2014) The role of EU rural development policy in supporting agroforestry systems in EU Italian working group in agroforestry. In: Palma J, Chalmin A (eds) 2nd European agroforestry conference: integrating science and policy to promote agroforestry in practice. EURAF, CottbusGoogle Scholar
  31. Reynolds PE, Simpson JA, Thevathasan NV, Gordon AM (2007) Effects of tree competition on corn and soybean photosynthesis, growth, and yield in a temperate tree-based agroforestry intercropping system in southern Ontario, Canada. Ecol Eng 29:362–371.  https://doi.org/10.1016/j.ecoleng.2006.09.024 CrossRefGoogle Scholar
  32. Rivest D, Rolo V, López-Díaz L, Moreno G (2011) Shrub encroachment in Mediterranean silvopastoral systems: Retama sphaerocarpa and Cistus ladanifer induce contrasting effects on pasture and Quercus ilex production. Agric Ecosyst Environ 141:447–454.  https://doi.org/10.1016/j.agee.2011.04.018 CrossRefGoogle Scholar
  33. Rivest D, Paquette A, Moreno G, Messier C (2013) A meta-analysis reveals mostly neutral influence of scattered trees on pasture yield along with some contrasted effects depending on functional groups and rainfall conditions. Agric Ecosyst Environ 165:74–79.  https://doi.org/10.1016/j.agee.2012.12.010 CrossRefGoogle Scholar
  34. Salkanovic E (2017) Simulation of agronomic productivity in a Combined Food and Energy (CFE) system in Denmark using the Yield-SAFE Model. Master Thesis. University of Copenhagen. Faculty of Science, Department of Plant and Environmental ScienceGoogle Scholar
  35. Sereke F, Graves AR, Dux D, Palma JHN, Herzog F (2015) Innovative agroecosystem goods and services: key profitability drivers in Swiss agroforestry. Agron Sustain Dev 35:759–770.  https://doi.org/10.1007/s13593-014-0261-2 CrossRefGoogle Scholar
  36. Smith J, Pearce BD, Wolfe MS (2013) Reconciling productivity with protection of the environment: is temperate agroforestry the answer? Renew Agric Food Syst 28:1–13.  https://doi.org/10.1017/S1742170511000585 CrossRefGoogle Scholar
  37. Toillon J, Fichot R, Dallé E et al (2013) Planting density affects growth and water-use efficiency depending on site in Populus deltoides × P. nigra. For Ecol Manage 304:345–354.  https://doi.org/10.1016/j.foreco.2013.05.017 CrossRefGoogle Scholar
  38. Torralba M, Fagerholm N, Burgess PJ, Moreno G, Plieninger T (2016) Do European agroforestry systems enhance biodiversity and ecosystem services? a meta-analysis. Agric Ecosyst Environ 230:150–161.  https://doi.org/10.1016/j.agee.2016.06.002 CrossRefGoogle Scholar
  39. van der Werf W, Keesman K, Burgess P, Graves A, Pilbeam D, Incoll LDD, Metselaar K, Mayus M, Stappers R, van Keulen H, Palma J, Dupraz C (2007) Yield-SAFE: a parameter-sparse, process-based dynamic model for predicting resource capture, growth, and production in agroforestry systems. Ecol Eng 29:419–433.  https://doi.org/10.1016/j.ecoleng.2006.09.017 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Forest Research Centre, School of AgricultureUniversity of LisbonLisbonPortugal
  2. 2.Cranfield UniversityCranfieldUK
  3. 3.Department of Soil Protection and RecultivationBrandenburg University of Technology Cottbus-SenftenbergCottbusGermany
  4. 4.AgroscopeZurichSwitzerland

Personalised recommendations