Advertisement

Potential contribution of plants bioactive in ruminant productive performance and their impact on gastrointestinal parasites elimination

  • Mohamed M. Zeineldin
  • Ahmed A. Sabek
  • Radwa A. Barakat
  • Mona M. M. Y. Elghandour
  • Abdelfattah Z. M. Salem
  • Roberto Montes de Oca Jiménez
Article

Abstract

The worldwide emergence of anthelmintic resistance against gastrointestinal (GIT) parasites prompts investigation towards sustainable alternative approaches. Accordingly, several approaches have been endeavored to control GIT parasites and increase economic values of livestock production systems. Current scientific evidence implies that there is substantial capability to use the plant bioactive compounds to enhance animal’s health and promote their productivity. Despite the great efforts in management, GIT parasites remain the main cause of mortality and weight gain–loss in ruminant industry. Recently, there is worldwide interest in exploiting plants bioactive and their secondary constituents as substitutes to anthelmintic treatment. However, we still necessitate to collect further data about their concentrations, sources, and composition, not only that but also understand their potential beneficial and detrimental impacts in livestock production. Simultaneously, our review discusses the research efforts towards the development of plants bioactive and their impact on GIT parasites elimination in ruminants. A summarized background on their impacts on ruminant productivity and the future research ppossibilities in this area were also provided. 

Keywords

Plants Bioactive Gastrointestinal Parasites Ruminant 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Abou-Elkhair R, Ahmed HA, Selim S (2014) Effects of black pepper (piper nigrum), turmeric powder (curcuma longa) and coriander seeds (coriandrum sativum) and their combinations as feed additives on growth performance, carcass traits, some blood parameters and humoral immune response of broiler chickens. Asian-Australasian. J Anim Sci 27:847–854.  https://doi.org/10.5713/ajas.2013.13644 CrossRefGoogle Scholar
  2. Aggarwal R, Kaur K, Suri M, Bagai U (2016) Anthelmintic potential of Calotropis procera, Azadirachta indica and Punica granatum against Gastrothylax indicus. J Parasit Dis 40:1230–1238.  https://doi.org/10.1007/s12639-015-0658-0 CrossRefPubMedGoogle Scholar
  3. Ahmed M, Laing MD, Nsahlai IV (2014) In vivo effect of selected medicinal plants against gastrointestinal nematodes of sheep. Trop Anim Health Prod 46:411–417.  https://doi.org/10.1007/s11250-013-0506-0 CrossRefPubMedGoogle Scholar
  4. Akkari H, Rtibi K, B’chir F et al (2014) In vitro evidence that the pastoral artemisia campestris species exerts an anthelmintic effect on haemonchus contortus from sheep. Vet Res Commun 38:249–255.  https://doi.org/10.1007/s11259-014-9609-y CrossRefPubMedGoogle Scholar
  5. Alonso-Díaz MA, Torres-Acosta JFJ, Sandoval-Castro CA et al (2008) In vitro larval migration and kinetics of exsheathment of Haemonchus contortus larvae exposed to four tropical tanniniferous plant extracts. Vet Parasitol 153:313–319CrossRefGoogle Scholar
  6. Athanasiadou S, Kyriazakis I (2004) Plant secondary metabolites: antiparasitic effects and their role in ruminant production systems. Proc Nutr Soc 63:631–639CrossRefGoogle Scholar
  7. Athanasiadou S, Kyriazakis I, Jackson F, Coop RL (2001) Direct anthelmintic effects of condensed tannins towards different gastrointestinal nematodes of sheep: in vitro and in vivo studies. Vet Parasitol 99:205–219CrossRefGoogle Scholar
  8. Athanasiadou S, Tzamaloukas O, Kyriazakis I et al (2005) Testing for direct anthelmintic effects of bioactive forages against Trichostrongylus colubriformis in grazing sheep. Vet Parasitol 127:233–243CrossRefGoogle Scholar
  9. Athanasiadou S, Githiori J, Kyriazakis I (2007) Medicinal plants for helminth parasite control: facts and fiction. Animal 1:1392–1400CrossRefGoogle Scholar
  10. Azrul LM, Poungpong K, Jittapalapong S, Prasanpanich S (2016) Short-term preliminary anthelmintic effect of sesbania grandiflora in naturally parasitic infected goats with side effects observation. Livest Res Int 4:18–22Google Scholar
  11. Barrau E, Fabre N, Fouraste I, Hoste H (2005) Effect of bioactive compounds from Sainfoin (Onobrychis viciifolia Scop.) on the in vitro larval migration of Haemonchus contortus: role of tannins and flavonol glycosides. Parasitology 131:531–538CrossRefGoogle Scholar
  12. Beauchemin KA, McGinn SM (2006) Effects of various feed additives on the methane emissions from beef cattle. Int Congr Ser 1293:152–155CrossRefGoogle Scholar
  13. Bernhoft A (2010) Bioactive compounds in plants—benefits and risks for man and animals. Acad Sci Lett Oslo 11–17Google Scholar
  14. Besier RB, Love SCJ (2003) Anthelmintic resistance in sheep nematodes in Australia: the need for new approaches. Aust J Exp Agric 43:1383–1391CrossRefGoogle Scholar
  15. Bickell S, Durmic Z, Blache D et al (2010) Rethinking the management of health and reproduction in small ruminants. In: Wittwer F, Chihuailaf R, Contreras H, Gall C, Kruze J, Lanuza F, Letelier C, Monti G, Noro M (eds) Updat Rumin Prod Med. Proceedings 26th World Buiatrics Congress 14–17 November 2010, Santiago, Chile, pp 317–325Google Scholar
  16. Bonsi MLK, Osuji PO, Tuah AK (1995) Effect of supplementing teff straw with different levels of leucaena or sesbania leaves on the degradabilities of teff straw, sesbania, leucaena, tagasaste and vernonia and on certain rumen and blood metabolites in Ethiopian Menz sheep. Anim Feed Sci Technol 52:101–129CrossRefGoogle Scholar
  17. Cala AC, Chagas ACS, Oliveira MCS et al (2012) In vitro anthelmintic effect of melia azedarach L. and Trichilia claussenii C. against sheep gastrointestinal nematodes. Exp Parasitol 130:98–102.  https://doi.org/10.1016/j.exppara.2011.12.011 CrossRefPubMedGoogle Scholar
  18. Camurça-Vasconcelos ALF, Bevilaqua CML, Morais SM et al (2008) Anthelmintic activity of lippia sidoides essential oil on sheep gastrointestinal nematodes. Vet Parasitol 154:167–170.  https://doi.org/10.1016/j.vetpar.2008.02.023 CrossRefPubMedGoogle Scholar
  19. Cedillo J, Kholif AE, Salem AZM et al (2015) Oral administration of sauce llorón extract to growing lambs to control gastrointestinal nematodes and moniezia spp. Asian Pac J Trop Med 8:520–525.  https://doi.org/10.1016/j.apjtm.2015.06.011 CrossRefPubMedGoogle Scholar
  20. Celi P, Gabai G (2015) Oxidant/antioxidant balance in animal nutrition and health: the role of protein oxidation. Front Vet Sci 2:1–13CrossRefGoogle Scholar
  21. Choubey M, Pattanaik AK, Baliyan S et al (2016) Dietary supplementation of a novel phytogenic feed additive: effects on nutrient metabolism, antioxidant status and immune response of goats. Anim Prod Sci 56:1612–1621.  https://doi.org/10.1071/AN14770 CrossRefGoogle Scholar
  22. Coles GC (2005) Anthelmintic resistance—looking to the future: a UK perspective. Res Vet Sci 78:99–108CrossRefGoogle Scholar
  23. Coles GC, Jackson F, Pomroy WE et al (2006) The detection of anthelmintic resistance in nematodes of veterinary importance. Vet Parasitol 136:167–185CrossRefGoogle Scholar
  24. Cruz-Vega D, Verde-Star MJ, Salinas-Gonzalez NR et al (2009) Review of pharmacological effects of Glycyrrhiza radix and its bioactive compounds. Zhongguo Zhong Yao Za Zhi 22:557–559Google Scholar
  25. de Mendonca RMA, Leite RC, Lana AMQ et al (2014) Parasitic helminth infection in young cattle raised on silvopasture and open-pasture in Southeastern Brazil. Agrofor Syst 88:53–62CrossRefGoogle Scholar
  26. Dilika F, Bremner PD, Meyer JJM (2000) Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: a plant used during circumcision rites. Fitoterapia 71:450–452CrossRefGoogle Scholar
  27. Durmic Z, Blache D (2012) Bioactive plants and plant products: effects on animal function, health and welfare. Anim Feed Sci Technol 176:150–162CrossRefGoogle Scholar
  28. Eguale T, Tilahun G, Debella A, et al (2007) Haemonchus contortus: in vitro and in vivo anthelmintic activity of aqueous and hydro-alcoholic extracts of Hedera helix. Exp Parasitol 116:340–345.  https://doi.org/10.1016/j.exppara.2007.01.019 CrossRefPubMedGoogle Scholar
  29. El-Far AH, Eman K, Bazh MM (2014) Research article antioxidant and antinematodal effects of. Int J Pharm Sci Rev Res 26:222–227Google Scholar
  30. Faria EF, Lopes LB, dos Reis KD et al (2016) Effect of the integrated livestock—forest system on recovery of trichostrongylid nematode infective larvae from sheep. Agrofor Syst 90:305–311CrossRefGoogle Scholar
  31. Féboli A, Laurentiz AC, Soares SCS et al (2016) Ovicidal and larvicidal activity of extracts of Opuntia ficus-indica against gastrointestinal nematodes of naturally infected sheep. Vet Parasitol 226:65–68CrossRefGoogle Scholar
  32. Ferreira LE, Benincasa BI, Fachin AL et al (2016) Thymus vulgaris L. essential oil and its main component thymol: anthelmintic effects against Haemonchus contortus from sheep. Vet Parasitol 228:70–76.  https://doi.org/10.1016/j.vetpar.2016.08.011 CrossRefPubMedGoogle Scholar
  33. Fu Y, Chen J, Li YJ, et al (2013) Antioxidant and anti-inflammatory activities of six flavonoids separated from licorice. Food Chem 141:1063–1071.  https://doi.org/10.1016/j.foodchem.2013.03.089 CrossRefPubMedGoogle Scholar
  34. Galicia-Aguilar HH, Rodríguez-González LA, Capetillo-Leal CM et al (2012) Effects of Havardia albicans supplementation on feed consumption and dry matter digestibility of sheep and the biology of Haemonchus contortus. Anim Feed Sci Technol 176:178–184CrossRefGoogle Scholar
  35. Gárcia CMB, Sprenger LK, Ortiz EB, Molento MB (2016) First report of multiple anthelmintic resistance in nematodes of sheep in Colombia. An Acad Bras Cienc 88:397–402CrossRefGoogle Scholar
  36. Gauthaman K, Ganesan AP (2008) The hormonal effects of Tribulus terrestris and its role in the management of male erectile dysfunction—an evaluation using primates, rabbit and rat. Phytomedicine 15:44–54CrossRefGoogle Scholar
  37. Ghisalberti EL (2002) Secondary metabolites with antinematodal activity. Stud Nat Prod Chem 26:425–506CrossRefGoogle Scholar
  38. Gobindram MNNE, Bognanno M, Luciano G et al (2017) The effects of barley replacement by dehydrated citrus pulp on feed intake, performance, feeding behaviour and serum metabolic indicators in lambs. Anim Prod Sci 57:133–140.  https://doi.org/10.1071/AN141010 CrossRefGoogle Scholar
  39. Gregory L, Yoshihara E, Ribeiro BLM et al (2015) Dried, ground banana plant leaves (Musa spp.) for the control of Haemonchus contortus and Trichostrongylus colubriformis infections in sheep. Parasitol Res 114:4545–4551.  https://doi.org/10.1007/s00436-015-4700-z CrossRefPubMedGoogle Scholar
  40. Hart KJ, Yáñez-Ruiz DR, Duval SM et al (2008) Plant extracts to manipulate rumen fermentation. Anim Feed Sci Technol 147:8–35CrossRefGoogle Scholar
  41. Hasan MI, Begum S, Islam S et al (2015) Effects of garlic supplementation on parasitic infestation, live weight, and hematological parameters in black Bengal goat. J Adv Vet Anim Res 2:326–331.  https://doi.org/10.5455/javar.2015.b102 CrossRefGoogle Scholar
  42. Hawken PAR, Fiol C, Blache D (2012) Genetic differences in temperament determine whether lavender oil alleviates or exacerbates anxiety in sheep. Physiol Behav 105:1117–1123CrossRefGoogle Scholar
  43. Hernandez PM, Salem AZM, Elghandour MMMY et al (2014) Anthelmintic effects of Salix babylonica L. and Leucaena leucocephala Lam. extracts in growing lambs. Trop Anim Health Prod 46:173–178.  https://doi.org/10.1007/s11250-013-0471-7 CrossRefPubMedGoogle Scholar
  44. Hoste H, Jackson F, Athanasiadou S et al (2006) The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends Parasitol 22:253–261CrossRefGoogle Scholar
  45. Hoste H, Torres-Acosta JFJ, Sandoval-Castro CA et al (2015) Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock. Vet Parasitol 212:5–17CrossRefGoogle Scholar
  46. Hussain I, Cheeke PR (1995) Effect of dietary Yucca schidigera extract on rumen and blood profiles of steers fed concentrate- or roughage-based diets. Anim Feed Sci Technol 51:231–242CrossRefGoogle Scholar
  47. Iqbal Z, Lateef M, Jabbar A, Gilani AH (2010) In vivo anthelmintic activity of Azadirachta indica A. Juss seeds against gastrointestinal nematodes of sheep. Vet Parasitol 168:342–345.  https://doi.org/10.1016/j.vetpar.2009.11.005 CrossRefPubMedGoogle Scholar
  48. Iqbal Z, Lateef M, Jabber A et al (2006) In vitro and in vivo anthelmintic activity of Nicotiana tabacum L. leaves against gastrointestinal nematodes of sheep. Phyther Res 20:46–48CrossRefGoogle Scholar
  49. Irum S, Ahmed H, Mukhtar M et al (2015) Anthelmintic activity of Artemisia vestita Wall ex DC. and Artemisia maritima L. against Haemonchus contortus from sheep. Vet Parasitol 212:451–455.  https://doi.org/10.1016/j.vetpar.2015.06.028 CrossRefPubMedGoogle Scholar
  50. Jabbar A, Zaman MA, Iqbal Z, et al (2007) Anthelmintic activity of Chenopodium album (L.) and Caesalpinia crista (L.) against trichostrongylid nematodes of sheep. J Ethnopharmacol 114:86–91.  https://doi.org/10.1016/j.jep.2007.07.027 CrossRefPubMedGoogle Scholar
  51. Jiménez-Peralta FS, Salem AZM, Mejia-Hernández P et al (2011) Influence of individual and mixed extracts of two tree species on in vitro gas production kinetics of a high concentrate diet fed to growing lambs. Livest Sci 136:192–200CrossRefGoogle Scholar
  52. Kanojiya D, Shanker D, Sudan V et al (2015a) Anthelmintic activity of Ocimum sanctum leaf extract against ovine gastrointestinal nematodes in India. Res Vet Sci 99:165–170.  https://doi.org/10.1016/j.rvsc.2015.01.017 CrossRefPubMedGoogle Scholar
  53. Kanojiya D, Shanker D, Sudan V et al (2015b) Assessment of in vitro and in vivo anthelminthic potential of extracts of Allium sativum bulb against naturally occurring ovine gastrointestinal nematodiosis. Vet Q 35:200–206.  https://doi.org/10.1080/01652176.2015.1099080 CrossRefPubMedGoogle Scholar
  54. Kanojiya D, Shanker D, Sudan V et al (2015c) In vitro and in vivo efficacy of extracts of leaves of Eucalyptus globulus on ovine gastrointestinal nematodes. Parasitol Res 114:141–148.  https://doi.org/10.1007/s00436-014-4169-1 CrossRefPubMedGoogle Scholar
  55. Karki U, Karki Y, Khatri R et al (2018) Raising goats in the southern-pine silvopasture system: challenges and opportunities. Agrofor Syst 2060:1–11Google Scholar
  56. Khan A, Tak H, Nazir R, Lone BA (2016) In vitro and in vivo anthelmintic activities of Iris kashmiriana Linn. J Saudi Soc Agric Sci.  https://doi.org/10.1016/j.jssas.2016.05.001 CrossRefGoogle Scholar
  57. Kozan E, Küpeli Akkol E, Süntar I (2016) Potential anthelmintic activity of Pelargonium endlicherianum Fenzl. J Ethnopharmacol 187: 183–186.  https://doi.org/10.1016/j.jep.2016.04.044 CrossRefPubMedGoogle Scholar
  58. Macedo ITF, Bevilaqua CML, de Oliveira LMB et al (2010) Anthelmintic effect of Eucalyptus staigeriana essential oil against goat gastrointestinal nematodes. Vet Parasitol 173:93–98.  https://doi.org/10.1016/j.vetpar.2010.06.004 CrossRefPubMedGoogle Scholar
  59. Mahala AG, Nasir A, Elseed MAF (2007) Chemical composition and in vitro gas production characteristics of six fodder trees leaves and seeds. Res J Agric Biol Sci 3:983–986Google Scholar
  60. Mahgoub O, Kadim IT, Tageldin MH et al (2008) Clinical profile of sheep fed non-conventional feeds containing phenols and condensed tannins. Small Rumin Res 78:115–122CrossRefGoogle Scholar
  61. Mamaghani A, Maham M, Dalir-Naghadeh B (2013) Effects of ginger extract on smooth muscle activity of sheep reticulum and rumen. Vet Res forum an Int Q J 4:91–97Google Scholar
  62. Mandal GP, Roy A, Patra AK (2014) Effects of feeding plant additives rich in saponins and essential oils on the performance, carcass traits and conjugated linoleic acid concentrations in muscle and adipose tissues of Black Bengal goats. Anim Feed Sci Technol 197:76–84.  https://doi.org/10.1016/j.anifeedsci.2014.08.008 CrossRefGoogle Scholar
  63. Marie-Magdeleine C, Udino L, Philibert L et al (2010) In vitro effects of Cassava (Manihot esculenta) leaf extracts on four development stages of Haemonchus contortus. Vet Parasitol 173:85–92CrossRefGoogle Scholar
  64. Matthews KK, O’Brien DJ, Whitley NC et al (2016) Investigation of possible pumpkin seeds and ginger effects on gastrointestinal nematode infection indicators in meat goat kids and lambs. Small Rumin Res 136:1–6.  https://doi.org/10.1016/j.smallrumres.2015.12.036 CrossRefGoogle Scholar
  65. Mehlhorn H, Al-Quraishy S, Al-Rasheid KAS et al (2011) Addition of a combination of onion (Allium cepa) and coconut (Cocos nucifera) to food of sheep stops gastrointestinal helminthic infections. Parasitol Res 108:1041–1046.  https://doi.org/10.1007/s00436-010-2169-3 CrossRefPubMedGoogle Scholar
  66. Min BR, Barry TN, Attwood GT, McNabb WC (2003) The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim Feed Sci Technol 106:3–19CrossRefGoogle Scholar
  67. Morais-Costa F, Bastos GA, Soares ACM et al (2016) In vitro and in vivo action of Piptadenia viridiflora (Kunth) Benth against Haemonchus contortus in sheep. Vet Parasitol 223:43–49.  https://doi.org/10.1016/j.vetpar.2016.04.002 CrossRefPubMedGoogle Scholar
  68. More P, Pai K (2011) Immunomodulatory effects of Tinospora cordifolia (Guduchi) on macrophage activation. Biol Med 3:134–140Google Scholar
  69. Neto AG, Costa JMLC, Belati CC et al (2005) Analgesic and anti-inflammatory activity of a crude root extract of Pfaffia glomerata (Spreng) Pedersen. J Ethnopharmacol 96:87–91CrossRefGoogle Scholar
  70. Niezen JH, Charleston WAG, Robertson HA et al (2002) The effect of feeding sulla (Hedysarum coronarium) or lucerne (Medicago sativa) on lamb parasite burdens and development of immunity to gastrointestinal nematodes. Vet Parasitol 105:229–245CrossRefGoogle Scholar
  71. Oliveira AP, Valentão P, Pereira JA et al (2009) Ficus carica L.: metabolic and biological screening. Food Chem Toxicol 47:2841–2846CrossRefGoogle Scholar
  72. Oliveira MCS, Nicodemo MLF, Pezzopane JRM et al (2017) Gastrointestinal nematode infection in beef cattle raised in silvopastoral and conventional systems in São Paulo state, Brazil. Agrofor Syst 91:495–507CrossRefGoogle Scholar
  73. Paolini V, Bergeaud JP, Grisez C et al (2003) Effects of condensed tannins on goats experimentally infected with Haemonchus contortus. Vet Parasitol 113:253–261CrossRefGoogle Scholar
  74. Patel D, Kumar R, Prasad S, Hemalatha S (2011) Pharmacologically screened aphrodisiac plant—a review of current scientific literature. Asian Pac J Trop Biomed 1:131–138CrossRefGoogle Scholar
  75. Patra AK, Saxena J (2011) Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J Sci Food Agric 91:24–37CrossRefGoogle Scholar
  76. Pent GJ, Fike JH (2018) Lamb productivity on stockpiled fescue in honeylocust and black walnut silvopastures. Agrofor Syst 1–9Google Scholar
  77. Piddock L (2002) Fluoroquinolone resistance in Salmonella serovars isolated from humans and food animals. FEMS Microbiol Rev 26:3–16CrossRefGoogle Scholar
  78. Pisseri F, De Benedictis C, Roberti Sarsina P, Azzarello BM (2013) Sustainable animal production, systemic prevention strategies in parasitic diseases of ruminants. Altern Integr Med 2Google Scholar
  79. Provenza FD, Villalba JJ (2010) The role of natural plant products in modulating the immune system: an adaptable approach for combating disease in grazing animals. Small Rumin Res 89:131–139CrossRefGoogle Scholar
  80. Raju J, Sahoo B, Chandrakar A et al (2015) Effect of feeding oak leaves (Quercus semecarpifolia vs Quercus leucotricophora) on nutrient utilization, growth performance and gastrointestinal nematodes of goats in temperate sub Himalayas. Small Rumin Res 125:1–9.  https://doi.org/10.1016/j.smallrumres.2014.12.013 CrossRefGoogle Scholar
  81. Ramírez-Restrepo CA, Barry TN, López-Villalobos N et al (2004) Use of Lotus corniculatus containing condensed tannins to increase lamb and wool production under commercial dryland farming conditions without the use of anthelmintics. Anim Feed Sci Technol 117:85–105.  https://doi.org/10.1016/j.anifeedsci.2004.05.005 CrossRefGoogle Scholar
  82. Ramírez-Rivera U, Sanginés-García JR, Escobedo-Mex JG et al (2010) Effect of diet inclusion of Tithonia diversifolia on feed intake, digestibility and nitrogen balance in tropical sheep. Agrofor Syst 80:295–302CrossRefGoogle Scholar
  83. Reed JD (1995) Nutritional toxicology polyphenols in of tannins and related forage legumes. J Anim Sci 73:1516–1528CrossRefGoogle Scholar
  84. Reis PJ (1978) Effectiveness of intravenous and abomasal doses of mimosine for defleecing sheep and effects on subsequent wool growth. Aust J Agric Res 29:1043–1055.  https://doi.org/10.1071/AR9781043 CrossRefGoogle Scholar
  85. Rochfort S, Parker AJ, Dunshea FR (2008) Plant bioactives for ruminant health and productivity. Phytochemistry 69:299–322CrossRefGoogle Scholar
  86. Roeber F, Jex AR, Gasser RB (2013) Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance—an Australian perspective. Parasit Vectors 6:1–13CrossRefGoogle Scholar
  87. Rogosic J, Estell RE, Ivankovic S et al (2008) Potential mechanisms to increase shrub intake and performance of small ruminants in mediterranean shrubby ecosystems. Small Rumin Res 74:1–15CrossRefGoogle Scholar
  88. Saha BK, Rahman MA (2015) Comparative efficacy of neem leaves extract and levamisole against ascariasis in chicken. Wayamba J Anim Sci 2:43–48Google Scholar
  89. Saidou W, Adama K, Balé B, Amadou T (2015) In vitro comparative anthelmintic activity on hæmonchus contortus of two natural fodders (Cassia obtusifolia and Piliostigma reticulatum) extracts used in Burkina Faso. Int J Agric For 5:146–150.  https://doi.org/10.5923/j.ijaf.20150502.08 CrossRefGoogle Scholar
  90. Salem AZM, Elghandour MMY, Kholif AE et al (2017) Tree leaves of Salix babylonica extract as a natural anthelmintic for small-ruminant farms in a semiarid region in Mexico. Agrofor Syst 91:111–122CrossRefGoogle Scholar
  91. Sandoval-Castro CA, Torres-Acosta JFJ, Hoste H et al (2012) Using plant bioactive materials to control gastrointestinal tract helminths in livestock. Anim Feed Sci Technol 176:192–201CrossRefGoogle Scholar
  92. Silanikove N (2000) The physiological basis of adaptation in goats to harsh environments. Small Rumin Res 35:181–193CrossRefGoogle Scholar
  93. Sillence MN (2004) Technologies for the control of fat and lean deposition in livestock. Vet J 167:242–257CrossRefGoogle Scholar
  94. Singh G, Singh R, Verma PK et al (2015) Anthelmintic efficacy of aqueous extract of Butea monosperma (Lam.) Kuntze against Haemonchus contortus of sheep and goats. J Parasit Dis 39:200–205.  https://doi.org/10.1007/s12639-013-0324-3 CrossRefPubMedGoogle Scholar
  95. Singh G, Singh R, Verma PK et al (2016) Anthelmintic efficacy of aqueous extract of Zanthoxylum armatum DC. seeds against Haemonchus contortus of small ruminants. J Parasit Dis 40:528–532.  https://doi.org/10.1007/s12639-014-0540-5 CrossRefPubMedGoogle Scholar
  96. Stafford GI, Pedersen ME, van Staden J, Jäger AK (2008) Review on plants with CNS-effects used in traditional South African medicine against mental diseases. J Ethnopharmacol 119:513–537CrossRefGoogle Scholar
  97. Stanner S, Hughes J, Kelly C, Buttriss J (2004) A review of the epidemiological evidence for the ‘antioxidant hypothesis’. Public Health Nutr 7:407–422CrossRefGoogle Scholar
  98. Stienezen M, Waghorn GC, Douglas GB (1996) Digestibility and effects of condensed tannins on digestion of sulla (Hedysarum coronarium) when fed to sheep. N Z J Agric Res 39:215–221CrossRefGoogle Scholar
  99. Stoldt A-K, Derno M, Das G et al (2016) Effects of rutin and buckwheat seeds on energy metabolism and methane production in dairy cows. J Dairy Sci 99:2161–2168.  https://doi.org/10.3168/jds.2015-10143 CrossRefPubMedGoogle Scholar
  100. Tadesse D, Eguale T, Giday M, Mussa A (2009) Ovicidal and larvicidal activity of crude extracts of Maesa lanceolata and Plectranthus punctatus against Haemonchus contortus. J Ethnopharmacol 122:240–244.  https://doi.org/10.1016/j.jep.2009.01.014 CrossRefPubMedGoogle Scholar
  101. Tanner GGJ, Moate P, Davis L et al (1995) Proant hocyanidins (Condensed Tannin) Dest abilise plant protein foams in a dose dependent manner. Aust J Agric Res 46:1101–1109CrossRefGoogle Scholar
  102. Tariq KA, Chishti MZ, Ahmad F, Shawl AS (2008) Epidemiology of gastrointestinal nematodes of sheep managed under traditional husbandry system in Kashmir valley. Vet Parasitol 158:138–143CrossRefGoogle Scholar
  103. Tariq KA, Chishti MZ, Ahmad F, Shawl AS (2009) Anthelmintic activity of extracts of Artemisia absinthium against ovine nematodes. Vet Parasitol 160:83–88CrossRefGoogle Scholar
  104. Taylor MA, Hunt KR, Goodyear KL (2002) Anthelmintic resistance detection methods. Vet Parasitol 103:183–194CrossRefGoogle Scholar
  105. Torres-Acosta JFJ, Mendoza-de-Gives P, Aguilar-Caballero AJ, Cuéllar-Ordaz JA (2012) Anthelmintic resistance in sheep farms: update of the situation in the American continent. Vet Parasitol 189:89–96CrossRefGoogle Scholar
  106. Tzamaloukas O, Athanasiadou S, Kyriazakis I et al (2005) The consequences of short-term grazing of bioactive forages on established adult and incoming larvae populations of Teladorsagia circumcincta in lambs. Int J Parasitol 35:329–335CrossRefGoogle Scholar
  107. Tzamaloukas O, Athanasiadou S, Kyriazakis I et al (2006) The effect of chicory (Cichorium intybus) and sulla (Hedysarum coronarium) on larval development and mucosal cell responses of growing lambs challenged with Teladorsagia circumcincta. Parasitology 132:419–426CrossRefGoogle Scholar
  108. Valdes KI, Salem AZM, Lopez S et al (2015) Influence of exogenous enzymes in presence of Salix babylonica extract on digestibility, microbial protein synthesis and performance of lambs fed maize silage. J Agric Sci 153:732–742.  https://doi.org/10.1017/S0021859614000975 CrossRefGoogle Scholar
  109. van Zyl EA, Botha FS, Eloff KJN et al (2017) The use of Lespedeza cuneata for natural control of gastrointestinal nematodes in Merino sheep. Onderstepoort J Vet Res 84:1–7Google Scholar
  110. Vargas-Magaña JJ, Torres-Acosta JFJ, Aguilar-Caballero AJ et al (2014) Anthelmintic activity of acetone-water extracts against Haemonchus contortus eggs: interactions between tannins and other plant secondary compounds. Vet Parasitol 206:322–327CrossRefGoogle Scholar
  111. Villalba JJ, Miller J, Ungar ED et al (2014) Ruminant self-medication against gastrointestinal nematodes: evidence, mechanism, and origins. Parasite 21:31CrossRefGoogle Scholar
  112. Waller PJ (1997) Sustainable helminth control of ruminants in developing countries. Vet Parasitol 71:195–207CrossRefGoogle Scholar
  113. Waller PJ, Thamsborg SM (2004) Nematode control in “green” ruminant production systems. Trends Parasitol 20:493–497CrossRefGoogle Scholar
  114. Wang D, Huang J, Zhang Z, et al (2013) Influences of Portulaca oleracea extracts on in vitro methane emissions and rumen fermentation of forage. J Food Agric Environ 11:483–488Google Scholar
  115. Wang Y, McAllister TA, Lora JH (2017) Effects of purified lignin on in vitro rumen metabolism and growth performance of feedlot cattle. Asian-Australasian J Anim Sci 30:392–399.  https://doi.org/10.5713/ajas.16.0317 CrossRefGoogle Scholar
  116. Wijngaard H, Hossain MB, Rai DK, Brunton N (2012) Techniques to extract bioactive compounds from food by-products of plant origin. Food Res Int 46:505–513CrossRefGoogle Scholar
  117. Wolstenholme AJ, Fairweather I, Prichard R et al (2004) Drug resistance in veterinary helminths. Trends Parasitol 20:469–476CrossRefGoogle Scholar
  118. Zain-Eldin MM, Ghanem MM, Abd El-Raof YM, El-Attar HM (2013) Clinical, haematobiochemical and electrocardigraphic changes of diarrheic sheep. Benha Vet Med J 24:329–342Google Scholar
  119. Zeineldin M, Abdelmegeid M, Barakat R, Ghanem M (2018) A review: herbal medicine as an effective therapeutic approach for treating digestive disorders in small ruminants. AJVS 56:33–44CrossRefGoogle Scholar
  120. Zein-Eldin MM, Ghanem MM, Abd El-Raof YM et al (2014) Clinical, haematobiochemical and ruminal changes during the onset and recovery of induced lactic acidosis in sheep. Biotechnol Anim Husb 30:647–659CrossRefGoogle Scholar
  121. Zhang Y, Luo H, Liu K et al. (2015) Antioxidant effects of liquorice (Glycyrrhiza uralensis) extract during aging of longissimus thoracis muscle in Tan sheep. Meat Sci 105:38–45.  https://doi.org/10.1016/j.meatsci.2015.03.002 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Animal Medicine, College of Veterinary MedicineBenha UniversityBenhaEgypt
  2. 2.Department of Veterinary Clinical Medicine, College of Veterinary MedicineUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Department of Veterinary Hygiene and Management, Faculty of Veterinary MedicineBenha UniversityBenhaEgypt
  4. 4.Department of Comparative Biosciences, College of Veterinary MedicineUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  5. 5.Facultad de Medicina Veterinaria y ZootecniaUniversidad Autonoma del Estado de MexicoTolucaMexico

Personalised recommendations