Advertisement

Agroforestry Systems

, Volume 93, Issue 1, pp 229–239 | Cite as

Ecological structure and carbon storage in traditional silvopastoral systems in Nicaragua

  • Aura CárdenasEmail author
  • Ana Moliner
  • Chiquinquirá Hontoria
  • Muhammad Ibrahim
Article

Abstract

Forests and agroforestry systems in the tropics play a decisive role in global carbon fixation strategies. The amount and type of coverage, along with the specific land use and land use change in a given area, determines whether carbon is stored or released into the atmosphere. The aim of this study was to evaluate the traditional silvopastoral systems (TSPS) through quantitative analysis of biomass and soil carbon storage whilst simultaneously qualitatively determining the ecological structure in terms of tree richness and diversity. The study was carried out in Matiguás, a sub-humid tropical region of Nicaragua, on five land use types: shrubland; intervened secondary forest; pasture with high tree density; pasture with low tree density and degraded pasture. Biomass carbon was estimated by allometric equations and soil organic carbon was evaluated at four depths (0–10, 10–20, 20–40 and 40–100 cm). Of the land uses studied, shrubland had the highest diversity. The biomass carbon ranged from 1.9 to 13.2 t C ha−1 for degraded pasture and intervened secondary forest, respectively. The highest soil organic carbon (SOC) storage at 1 m depth was for intervened secondary forest (163 t C ha−1), whereas degraded pastures had the lowest value (76 t C ha−1). Since SOC was the largest pool of total carbon in all cases, it should be evaluated down to a depth of at least 1 m. Increasing tree coverage in degraded and low-tree density pastures can contribute not only to enhance carbon sequestration but also to restore degraded lands in livestock landscapes.

Keywords

Pastures Carbon sequestration Land use change Sub humid tropical conditions Soil organic carbon 

Notes

Acknowledgements

This study was carried out in the context of the Regional Integrated Silvopastoral Approaches to Ecosystem Management Project (RISEMP) pilot, 2002–2008, in Colombia, Costa Rica and Nicaragua.

References

  1. Amézquita MC, Ibrahim M, Llanderal T, Buurman P, Amézquita E (2004) Carbon sequestration in pastures, silvo-pastoral systems and forests in four regions of the Latin American tropics. J Sustain For 21(1):31–49CrossRefGoogle Scholar
  2. Andrade HJ, Ibrahim M (2003) ¿Cómo monitorear el secuestro de carbono en los sistemas silvopastoriles? Agrofor Am 10(39–40):109–116Google Scholar
  3. Andrade HJ, Brook R, Ibrahim M (2008) Growth, production and carbon sequestration of silvopastoral systems with native timber species in the dry lowlands of Costa Rica. Plant Soil 308(1–2):11–22CrossRefGoogle Scholar
  4. Bennetzen EH, Smith P, Porter JR (2016) Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Glob Change Biol 22(2):763–781CrossRefGoogle Scholar
  5. Betancourt K, Ibrahim M, Harvey C, Vargas B (2003) Efecto de la cobertura arbórea sobre el comportamiento animal en fincas ganaderas de doble propósito en Matiguás, Matagalpa, Nicaragua. Agrofor Am 10(39–40):47–51Google Scholar
  6. Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer, vol 134. Food & Agriculture Organisation of the United Nations, RomeGoogle Scholar
  7. Brown S (2002) Measuring, monitoring, and verification of carbon benefits for forest–based projects. Philos Trans R Soc Lond A 360(1797):1669–1683CrossRefGoogle Scholar
  8. Buendia L, Miwa K, Ngara T, Tanabe K (2006) IPCC guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme. IGES, HayamaGoogle Scholar
  9. Carr D, Barbieri A, Pan W, Iranavi H (2006) Agricultural change and limits to deforestation in Central America. In: Agriculture and climate beyond 2015, pp 91–107Google Scholar
  10. Chacón-León M, Harvey CA (2013) Reservas de biomasa de árboles dispersos en potreros y mitigación al cambio climático. Agron Mesoam 24(1):17–26CrossRefGoogle Scholar
  11. Charturvedi RK, Raghubanshi AS, Singh JS (2011) Carbon density and accumulation in woody species of tropical dry forest in India. For Ecol Manage 262:1576–1588CrossRefGoogle Scholar
  12. Dagang AB, Nair PKR (2003) Silvopastoral research and adoption in Central America: recent findings and recommendations for future directions. Agrofor Syst 59(2):149–155CrossRefGoogle Scholar
  13. Delaney M, Brown S, Lugo AE, Torres-Lezama A, Quintero NB (1997) The distribution of organic carbon in major components of forests located in five life zones of Venezuela. J Trop Ecol 13(05):697–708CrossRefGoogle Scholar
  14. FAO (Food and Agriculture Organization of the United Nations) (2001) Global Forest Resources Assessment 2000. FAO Forestry Paper No. 140. RomeGoogle Scholar
  15. Fisher RA, Corbet AS, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. J Anim Ecol 12(1):42–58CrossRefGoogle Scholar
  16. Gibbs H, Ruesch, AS, Foley JA, Ramankutty N, Achard F, Holmgren P (2010) Pathways of agricultural expansion across the tropics: Implications for forest resources. Proc Natl Acad Sci USA (forthcoming)Google Scholar
  17. Gordon JE, Hawthorne WD, Reyes-Garcıa A, Sandoval G, Barrance AJ (2004) Assessing landscapes: a case study of tree and shrub diversity in the seasonally dry tropical forests of Oaxaca, Mexico and southern Honduras. Biol Conserv 117(4):429–442CrossRefGoogle Scholar
  18. Graesser J, Aide TM, Grau HR, Ramankutty N (2015) Cropland/pastureland dynamics and the slowdown of deforestation in Latin America. Environ Res Lett 10(3):034017CrossRefGoogle Scholar
  19. Harvey CA, Villanueva C, Esquivel H, Gómez R, Ibrahim M, Lopez M, Martinez J, Muñoz D, Restrepo C, Saénz JC, Villacís J, Sinclair FL (2011) Conservation value of dispersed tree cover threatened by pasture management. For Ecol Manage 261(10):1664–1674CrossRefGoogle Scholar
  20. Ibrahim M, Chacón M, Cuartas C, Naranjo J, Ponce G, Vega P, Rojas J (2007 Almacenamiento de carbono en el suelo y la biomasa arbórea en sistemas de usos de la tierra en paisajes ganaderos de Colombia, Costa Rica y Nicaragua. Agroforestería en las Américas, N° 45Google Scholar
  21. IPCC (2000) In: Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (eds) Land use, land-use change and forestry. Cambridge University Press, CambridgeGoogle Scholar
  22. IPCC (2007) Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  23. Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76(1):1–10CrossRefGoogle Scholar
  24. Kaimowitz D (1996) Livestock and deforestation in Central America in the 1980s and 1990s: a policy perspective (No. 9). CiforGoogle Scholar
  25. Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E (2015) Dynamics of global forest area: results from the FAO global forest resources assessment 2015. For Ecol Manage 352:9–20CrossRefGoogle Scholar
  26. Kirby KR, Potvin C (2007) Variation in carbon storage among tree species: implications for the management of a small-scale carbon sink project. For Ecol Manage 246(2):208–221CrossRefGoogle Scholar
  27. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15(3):259–263CrossRefGoogle Scholar
  28. Krebs CJ (1989) Ecological methodology (No. QH541. 15. S72. K74 1999.). Harper & Row, New YorkGoogle Scholar
  29. Lasky JR, Uriarte M, Boukili VK, Erickson DL, John Kress W, Chazdon RL (2014) The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecol Lett 17(9):1158–1167CrossRefGoogle Scholar
  30. Levard L, Marín López Y, Navarro I (2001) Municipio de Matiguás: Potencialidades y limitantes del desarrollo agropecuarioGoogle Scholar
  31. MacDicken KG (1997) A guide to monitoring carbon storage in forestry and agroforestry projects. Winrock International Institute for Agricultural Development, Little RockGoogle Scholar
  32. Magurran AE (1981) Biological diversity and woodland management: an investigation with special reference to Banagher, Co. Derry, N. Ireland (Doctoral dissertation, New University of Ulster)Google Scholar
  33. Margalef R (1958) Information theory in ecology. Gen Syst 3:36–71Google Scholar
  34. McGroddy ME, Lerner AM, Burbano DV, Schneider LC, Rudel TK (2015) Carbon stocks in silvopastoral systems: a study from four communities in southeastern Ecuador. Biotropica 47(4):407–415CrossRefGoogle Scholar
  35. Montagnini F, Ibrahim M, Murgueitio E (2013) Silvopastoral systems and climate change mitigation in Latin America. Bois et Forêts des Tropiques 316(2):3–16CrossRefGoogle Scholar
  36. Mosquera O, Buurman P, Ramirez BL, Amezquita MC (2012) Carbon stocks and dynamics under improved tropical pasture and silvopastoral systems in Colombian Amazonia. Geoderma 189:81–86CrossRefGoogle Scholar
  37. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Wagner H (2014) vegan: Community Ecology Package. R package version 2.1-41/r2867Google Scholar
  38. Pagiola S, Ramírez E, Gobbi J, de Haan C, Ibrahim M, Murgueitio E, Ruíz JP (2007) Paying for the Environmental Services of Silvopastoral Practices in Nicaragua. Ecol Econ 64(2):374–385.  https://doi.org/10.1016/j.ecolecon.2007.04.014 CrossRefGoogle Scholar
  39. Ruiz A, Ibrahim M, Beer J, Locatelli B, Andrade Castañeda HJ (2004) Fijación y almacenamiento de carbono en sistemas silvopastoriles y competitividad económica de fincas ganaderas en Matiguás, NicaraguaGoogle Scholar
  40. Saha SK, Nair PR, Nair VD, Kumar BM (2009) Soil carbon stock in relation to plant diversity of homegardens in Kerala, India. Agrofor Syst 76(1):53–65CrossRefGoogle Scholar
  41. Segura M, Kanninen M (2002) Inventario para estimar carbono en ecosistemas forestales tropicales. Inventarios Forestales para Bosques Latifoliados en América Central. Turrialba, CR, CATIE, pp 202–216Google Scholar
  42. Shelton M (2000) Tropical forage tree legumes: Key development issues http://www.fao.org/ag/AGP/AGPC/doc/Present/Shelton/. A short version of this paper has been included in Unasylva 51 (200), 25-32
  43. Szott L, Ibrahim M, Beer J (2000) The hamburger connection hangover: cattle, pasture land degradation and alternative land use in Central America (No. 313). Bib. Orton IICA/CATIEGoogle Scholar
  44. Takimoto A, Nair PR, Nair VD (2008) Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agr Ecosyst Environ 125(1):159–166CrossRefGoogle Scholar
  45. West PC, Gibbs HK, Monfreda C, Wagner J, Barford CC, Carpenter SR, Foley JA (2010) Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land. Proc Natl Acad Sci USA 107(46):19645–19648CrossRefGoogle Scholar
  46. Yamamoto W, ApDewi I, Ibrahim M (2007) Effects of silvopastoral areas on milk production at dual-purpose cattle farms at the semi-humid old agricultural frontier in central Nicaragua. Agric Syst 94(2):368–375CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Producción AgrariaUniversidad Politécnica de MadridMadridSpain
  2. 2.Centro Agronómico Tropical de Investigación y EnseñanzaTurrialbaCosta Rica

Personalised recommendations