Advertisement

Agroforestry Systems

, Volume 93, Issue 3, pp 973–988 | Cite as

Evaluation of wood properties of four ages of Cedrela odorata trees growing in agroforestry systems with Theobroma cacao in Costa Rica

  • Carolina Tenorio
  • Roger MoyaEmail author
Article

Abstract

The present work studies the morphological, physical, mechanical and chemical properties, decay resistance, preservation and workability of Cedrela odorata wood from trees growing in agroforestry systems with Theobroma cacao at four ages (4-, 5-, 6- and 7-years-old) in Costa Rica. It was found that the morphological properties (heartwood, pith and bark), together with the physical properties (specific gravity, green density, shrinkage and green moisture content) presented few differences at the four ages. The wood from 4-years-old trees was the only exception, showing less resistance in compression, flexion and lateral hardness. The content of lignin, carbon, and extractives in hot water were not affected among the different ages, contrary to the rest of chemical properties. In relation to decay resistance in accelerated tests with the fungus Trametes versicolor, the wood is classified as highly resistant, while with the fungus Lencites acuta it is classified as moderately resistant. As concerns properties related to industrialization, it was found that the wood can be preserved through vacuum-pressure methods obtaining similar results as those from other plantation timbers. As for workability tests, the wood from the 4-years-old trees show acceptable to very poor performance, differing from trees from the other ages.

Keywords

Tropical wood Wood cedar Cedro amargo Growth rate Farmer tree 

Notes

Acknowledgements

The authors are grateful for the support of the Vicerrectoría de Investigación y Extensión of the Instituto Tecnológico de Costa Rica and also of Hacienda Azul S.A., who contributed the materials for this research.

References

  1. Andrés P, Salgado C, Espelta JM (2011) Optimizing nursery and plantation methods to grow Cedrela odorata seedlings in tropical dry agroecosystems. Agrofor Syst 83:225–234CrossRefGoogle Scholar
  2. ASTM (American Society for Testing and Materials, USA) (2005) D2017-05. Standard Test Method of accelerated laboratory test of natural decay resistance of woods. ASTM International, West ConshohockenGoogle Scholar
  3. ASTM (American Society for Testing and Materials, USA) (2013a) D1110-84. Standard test methods for water solubility of wood. ASTM International, West ConshohockenGoogle Scholar
  4. ASTM (American Society for Testing and Materials, USA) (2013b) D1109-84. Standard test method for 1% sodium hydroxide solubility of wood. ASTM International, West ConshohockenGoogle Scholar
  5. ASTM (American Society for Testing and Materials, USA) (2013c) D1108-96. Standard test method for dichloromethane soluble in wood. ASTM International, West ConshohockenGoogle Scholar
  6. ASTM (American Society for Testing and Materials, USA) (2013d) D1107-96. Standard test method for ethanol-toluene solubility of wood. ASTM International, West ConshohockenGoogle Scholar
  7. ASTM (American Society for Testing and Materials, USA) (2014a) D2395-14. Standard test method for density and specific gravity (relative density) of wood and wood based materials. West ConshohockenGoogle Scholar
  8. ASTM (American Society for Testing and Materials, USA) (2014b) D143-14. Standard test method for small clear specimens of timber. ASTM International, West ConshohockenGoogle Scholar
  9. Beer J, Muschler R, Kass D, Somarriba E (1998) Shade management in coffee and cacao plantations. Agrofor Syst 38:139–164CrossRefGoogle Scholar
  10. Benitez R, Montesinos JL (1988) Catálogo de cien especies forestales de Honduras: Distribución, propiedades y usos. Escuela Nacional de Ciencias Forestales (ESNACIFOR). Siguatepeque, HondurasGoogle Scholar
  11. Berrocal A, Rodriguez-Zuniga A, Veja-Baudrit J, Noguera SC (2014) Effect of silver nanoparticles on white-rot wood decay and some physical properties of three tropical wood species. Wood Fiber Sci 46(4):527–538Google Scholar
  12. De Sousa KF, Detlefsen G, de Melo Virginio Filho E, Tobar D, Casanoves F (2016) Timber yield from smallholder agroforestry systems in Nicaragua and Honduras. Agrofor Syst 90(2):207–218CrossRefGoogle Scholar
  13. Dünisch O, Bauch J, Gasparotto L (2002) Formation of increment zones and intraannual growth dynamics in the xylem of Swietenia macrophylla, Carapa guianensis, and Cedrela odorata (Meliaceae). IAWA J 23(2):101–119CrossRefGoogle Scholar
  14. Dünisch O, Montóia VR, Bauch J (2003) Dendroecological investigations on Swietenia macrophylla King and Cedrela odorata L. (Meliaceae) in the central Amazon. Trees 17(3):244–250Google Scholar
  15. Gillies ACM, Cornelius JP, Newton AC, Navarro C, Hernández M, Wilson J (1997) Genetic variation in Costa Rican populations of the tropical timber species Cedrela odorata L., assessed using RAPDs. Mol Ecol 6:1133–1145CrossRefGoogle Scholar
  16. Glencross K, Nichols JD, Leimon Kalomor L, Sethy M (2013) Growth and wood properties of terminalia catappa from agroforestry systems in Vanuatu. Final report number FR2013-31. 36 p. Australian Centre for International Agricultural Research—ACIAR ABN 34 864 955 427Google Scholar
  17. Gramlich A, Tandy S, Andres C, Paniagua JC, Armengot L, Schneider M, Schulin R (2017) Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management. Sci Total Environ 580:677–686CrossRefGoogle Scholar
  18. Hillis WE (1971) Distribution, properties and formation of some wood extractives. Wood Sci Technol 5(4):272–289CrossRefGoogle Scholar
  19. Jagoret P, Michel I, Ngnogué HT, Lachenaud P, Snoeck D, Malézieux E (2017) Structural characteristics determine productivity in complex cocoa agroforestry systems. Agron Sustain Dev 37(6):60CrossRefGoogle Scholar
  20. Jaimez RE, Araque O, Guzman D, Mora A, Espinoza W, Tezara W (2013) Agroforestry systems of timber species and cacao: survival and growth during the early stages. J Agri Rural Dev Trop Subtrop 114(1):1–11Google Scholar
  21. Keenan FJ, Tejeda M (1988) Tropical timber for building materials in the Andean Group countries of South America. IDCR-TS49e. International Development Research Institute, OttawaGoogle Scholar
  22. Kokutse AD, Baillères H, Stokes A, Kokou K (2004) Proportion and quality of heartwood in Togolese teak (Tectona grandis L.f.). For Ecol Manag 189(1–3):37–48CrossRefGoogle Scholar
  23. Kouakou SS, Marchal R, Brancheriau L, Guyot A, Guibal D (2016) The quality of poplar wood from agroforestry: a comparison with forest plantation. In: Gosme M (ed) 3rd European agroforestry conference. Montpellier, France, 23–25 May 2016, pp 274–276. Available in https://agritrop.cirad.fr/580654/1/ID580654%20.pdf
  24. Longwood FR (1962) Present and potential commercial timbers of the Caribbean. Agriculture Handbook No. 207. Forest Service, U.S. Department of Agriculture. Washington DCGoogle Scholar
  25. Martínez-Castillo JL, Martínez-Pinillos E (1996) Características de maquinado de 32 especies de madera. Madera y Bosques 2(1):45–62CrossRefGoogle Scholar
  26. Méndez VE, Lok R, Somarriba E (2001) Interdisciplinaryanalysis of homegardens in Nicaragua: micro-zonation, plant use and socioeconomic importance. Agrofor Syst 51:85–96CrossRefGoogle Scholar
  27. Montagnini F, Nair PKR (2004) Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agrofor Syst 61(1–3):281–295Google Scholar
  28. Moya R, Muñoz F (2010) Physical and mechanical properties of eight species from fast-growth plantation in Costa Rica. J Trop For Sci 22(3):317–328Google Scholar
  29. Moya R, Tenorio C (2013) Fuelwood characteristics and its relation with extractives and chemical properties of ten fast-growth species in Costa Rica. Biomass Bioenergy 56:14–21CrossRefGoogle Scholar
  30. Moya R, Valenzuela L, Salazar F (2002) Efecto de la fertilización de la pradera sobre la densidad básica de Pinus radiata. D. Don. Rev Invest Agrar 11(2):182–192Google Scholar
  31. Moya R, Araya L, Vilchez B (2008) Variation in the pith parameter of Gmelina arborea trees from fast growth plantations in Costa Rica. Ann For Sci 65(6):612–621CrossRefGoogle Scholar
  32. Moya R, Salas C, Berrocal A, Valverde JC (2015) Evaluation of chemical compositions, air-dry, preservation and workability of eight fast-growing plantation species in Costa Rica. Maderas y Bosques 21:31–47Google Scholar
  33. Moya R, Rodriguez-Zuñiga A, Berrocal A, Vega-Baudrit J (2017a) Effect of silver nanoparticles synthesized with NPsAg-ethylene glycol (C2H6O2) on brown decay and white decay fungi of nine tropical woods. J Nanosci Nanotechnol 17(8):5233–5240CrossRefGoogle Scholar
  34. Moya R, Rodriguez-Zuñiga A, Puente-Urbina A (2017b) Thermogravimetric and devolatilisation analysis for five plantation species: effect of extractives, ash compositions, chemical compositions and energy parameters. Thermochim Acta 647(10):36–48CrossRefGoogle Scholar
  35. Muñoz F, Moya R (2008) Moisture content variability in kiln-dried Gmelina arborea: effect of radial position and anatomical features. J Wood Sci 54(4):318–322CrossRefGoogle Scholar
  36. Navarro C, Ward S, Hernandez M (2002) The tree Cedrela odorata (Meliaceae): a morphologically subdivided species in Costa Rica. Rev Biol Trop 50(1):21–29Google Scholar
  37. Navarro C, Montagnini F, Hernández G (2004) Genetic variability of Cedrela odorata Linnaeus: results of early performance of provenances and families from Mesoamerica grown in association with coffee. For Ecol Manag 192(2):217–227CrossRefGoogle Scholar
  38. Paine CET, Stahl C, Courtois EA, Patino S, Sarmiento C, Baraloto C (2010) Functional explanations for variation in bark thickness in tropical rain forest trees. Funct Ecol 24:1202–1210CrossRefGoogle Scholar
  39. Pereira H, Graca J, Rodriguez JC (2003) Wood chemistry in relation to quality. In: Barnett JG, Eronimidis J (eds) Wood quality and its biological basis. Blackwell Publishing, London, pp 3–40Google Scholar
  40. Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127(4):1513–1523CrossRefGoogle Scholar
  41. Reza-Taghiyari H, Efhami-Sisi D (2012) The effects of tree-alfalfa intercropped systems on wood quality in temperate regions. In: Kaonga M (ed) Agroforestry for biodiversity and ecosystem services: science and practice. InTech. http://www.intechopen.com/books/agroforestry-for-biodiversity-and-ecosystem-services-science-andpractice/the-effects-of-agroforestry-practices-on-wood-quality
  42. Roffael E (2016) Significance of wood extractives for wood bonding. Appl Microbiol Biotechnol 100:1589–1596CrossRefGoogle Scholar
  43. Rosales-Castro M, Honorato-Salazar JA, Santos-García AB, Pérez-López ME, Colotl-Hernandez G, Sánchez-Monsalvo V (2016) Chemical composition of leaves and branches of Cedrela odorata L. from two forest plantations as a source of lignocellulosic feedstock. Madera y Bosques 22(2):131–146CrossRefGoogle Scholar
  44. Shanavas A, Kumar BM (2006) Physical and mechanical properties of three agroforestry tree species from Kerala, India. J Trop Agric 44(1–2):23–30Google Scholar
  45. Shukla SR, Viswanath S (2014) Comparative study on growth, wood quality and financial returns of teak (Tectona grandis L.f.) managed under three different agroforestry practices. Agrofor Syst 88:331–341CrossRefGoogle Scholar
  46. Somarriba E, Beer J (2011) Productivity of Theobroma cacao agroforestry systems with timber or legume service shade trees. Agrofor Syst 81:109–121CrossRefGoogle Scholar
  47. Somarriba E, Cerda R, Orozco L, Cifuentes M, Dávila H, Espinoza T, Astorga C (2013) Carbon stocks and cocoa yields in agroforestry systems of Central America. Agric Ecosyst Environ 173:46–57CrossRefGoogle Scholar
  48. Somarriba E, Suárez-Islas A, Calero-Borge W, Villota A, Castillo C, Vílchez S, Deheuvels O, Cerda R (2014) Cocoa–timber agroforestry systems: theobroma cacaoCordia alliodora in Central America. Agrofor Syst 88:1001–1019CrossRefGoogle Scholar
  49. Suárez PE, Honorato SJ (2014) Determinación del contenido de extractos de la madera y corteza de tres genotipos de Cedrela odorata. XXVI Reunión Científica Tecnológica, Forestal y Agropecuaria Tabasco 2014, 603. MéxicoGoogle Scholar
  50. Taylor AM, Gartner BL, Morrell JJ (2002) Heartwood formation and natural durability: a review. Wood Fiber Sci 34:587–611Google Scholar
  51. Telmo C, Lousada J (2011) The explained variation by lignin and extractive contents on higher heating value of wood. Biomass Bioener 35:1663–1667CrossRefGoogle Scholar
  52. Tenorio C, Moya R (2011) Kiln drying of Acacia mangium Willd wood: considerations of moisture content before and after drying and presence of wet pockets. Dry Technol 29:1845–1854CrossRefGoogle Scholar
  53. Tenorio C, Moya R, Salas C, Berrocal A (2016a) Evaluation of wood properties from six native species of forest plantations in Costa Rica. Revista Bosques 37(1):71–84CrossRefGoogle Scholar
  54. Tenorio C, Moya R, Salas C (2016b) Kiln drying behavior utilizing drying rate of lumber from six fast-growth plantation species in Costa Rica. Dry Technol 34:443–454CrossRefGoogle Scholar
  55. Timell TE (1986) Compression wood in gymnosperms, vol 1–3. Springer, Berlin, p 425CrossRefGoogle Scholar
  56. Torelli N, Čufar K (1996) Mexican tropical hardwoods: machinability, nailing and screwing. Eur J Wood Wood Prod 54:69–71CrossRefGoogle Scholar
  57. Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Scherber C (2011) Multifunctional shade-tree management in tropical agroforestry landscapes: a review. J Appl Ecol 48:619–629CrossRefGoogle Scholar
  58. West PW (2014) Growth rates and wood quality. Growing plantation forests. Springer, ChamCrossRefGoogle Scholar
  59. Wilson BG, Witkowski ETF (2003) Seed banks, bark thickness and change in age and size structure (1978–1999) of the African savanna tree, Burkea africana. Plant Ecol 167:151–162CrossRefGoogle Scholar
  60. Yang KC, Chen YS, Chiu C, Hazenberg G (1994) Formation and vertical distribution of sapwood and heartwood in Cryptomeria japonica D. Don. Trees 9:35–40CrossRefGoogle Scholar
  61. Yeboah D, Burton AJ, Storer AJ, Opuni-Frimpong E (2014) Variation in wood density and carbon content of tropical plantation tree species from Ghana. New For 45:35–52CrossRefGoogle Scholar
  62. Zobel BJ, Van Buijtenen JP (2012) Wood variation: its causes and control. Springer, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Escuela de Ingeniería ForestalInstituto Tecnológico de Costa RicaCartagoCosta Rica

Personalised recommendations