Advertisement

Agroforestry Systems

, Volume 93, Issue 3, pp 915–928 | Cite as

CH4, CO2 and N2O emissions from grasslands and bovine excreta in two intensive tropical dairy production systems

  • Julian E. Rivera
  • Julian Chará
  • Rolando BarahonaEmail author
Article

Abstract

The production of beef and milk has a significant impact on climate change, as these activities are responsible for a large proportion of the greenhouse gases emitted in agriculture. We used the static closed chamber technique to measure the rate of CH4-C, N2O-N and CO2-C emissions from pastures (102 days) and bovine excretions (27 days) in an intensive pasture monoculture (PM) and an intensive silvopastoral system (ISS) in the Cauca Valley of Colombia. Mean soil CO2-C (mg m2 h−1), CH4-C and N2O-N emissions (μg m−2 h−1) were 236.7 versus 113.4; 46.7 versus 1.01 and 344.7 versus 40.1 for the PM and ISS, respectively. The accumulated flows for PM and ISS during the evaluation period were 751.6 and 424.3; 4.39 and − 0.41; and 12.75 and 1.55 (kg ha−1) for CO2-C, CH4-C and N2O-N, respectively. Regarding manure, the PM had lower CO2-C and CH4-C emissions (498.6 vs. 981.2 mg m−2 h−1, and 1.9 vs. 4.7 μg m2 h−1; p > 0.05), and higher N2O-N emissions (2967.3 vs. 1179.8 μg m−2 h−1; p = 0.02) than the ISS, respectively. For the urine patches, the ISS emitted only 47.9, 2.2 and 11.6% of the CO2-C, CH4-C and N2O-N emissions observed in the PM, respectively. Moreover, comparing both systems with a forest, CH4-C and N2O-N emissions from the ISS were not different (p > 0.05), but the PM presented higher emissions for the three gases (p < 0.0001). The emissions reported in the present study differ from the emission factors suggested by the IPCC and other authors for manure and urine. PM presented higher N losses than the ISS from both manure (1.77 vs. 1.37%) and urine (3.47 vs. 0.3%) (p < 0.05). The ISS might contribute to the reduction of GHG emissions from grasslands in contrast to traditional grazing systems, despite the high stocking rates and legume densities, producing emissions similar to those of a forest.

Keywords

Fertilization Greenhouse gases Global warming Intensive silvopastoral systems Leucaena 

Notes

Acknowledgments

The authors wish to acknowledge the financial support received from the Colombian Ministry of Agriculture and Rural Development and the International Centre for Tropical Agriculture for the project “Análisis Integral de sistemas productivos en Colombia para la adaptación al cambio climático” and from COLCIENCIAS for the project “Uso de nitrógeno por ganado bovino criollo colombiano bajo sistemas silvopastoriles intensivos con Leucaena leucocephala en condiciones de bosque seco tropical (561-2011)”. Thanks also to El Hatico and Trejitos farm owners for the permission to carry out this study, the provision of data and the collaboration during the field work.

References

  1. Allen AG, Jarvis SC, Headon DM (1996) Nitrous oxide emissions from soils due to inputs of nitrogen from excreta return by livestock on grazed grassland in the UK. Soil Biol Biochem 28:597–607CrossRefGoogle Scholar
  2. Alves BJ, Smith R, Flores KA, Carodoso RA, Olivera AS, Jantalia WRD, Urquiaga PC, Boddey RM (2012) Selection of the most suitable sampling time for static chambers for the estimation of daily mean N2O flux from soils. Soil Biol Biochem 46:129–135CrossRefGoogle Scholar
  3. Berger L (2011) Emisiones de Óxido nitroso producidas por la actividad ganadera en el Uruguay en condiciones de pastoreo. Informe de pasantía, Facultad de Ciencias, Universidad de la República, MontevideoGoogle Scholar
  4. Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol 19:1325–1346CrossRefGoogle Scholar
  5. Bueno L, Camargo JC (2015) Edaphic nitrogen and nodulation of Leucaena leucocephala (Lam.) de Wit in silvopastoral systems. Acta Agron 4(4):349–354Google Scholar
  6. Burchill W, Li D, Lanigan GJ, Williams M, Humphreys J (2014) Inter-annual variation in nitrous oxide emissions from perennial ryegrass/white clover grassland used for dairy production. Glob Chang Biol 20(10):3137–3146CrossRefGoogle Scholar
  7. Burt R (2004) Soil survey laboratory methods manual version 4. USDA-NRCS, NebraskaGoogle Scholar
  8. Calle Z, Murgueitio E, Chará J (2012) Integrating forestry, sustainable cattle-ranching and landscape restoration. Unasylva 63:31–40Google Scholar
  9. Calle Z, Murgueitio E, Chará J, Molina CH, Zuluaga AF, Calle A (2013) A strategy for scaling up intensive silvopastoral systems in Colombia. Sustain For 32:677–693CrossRefGoogle Scholar
  10. Cardenas LM, Chadwick D, Scholefield D, Fychan R, Marley CL, Jones R, Bol R, Well R, Vallejo A (2007) The effect of diet manipulation on nitrous oxide and methane emissions from manure application to incubated grassland soils. Atmos Environ 41:7096–7107CrossRefGoogle Scholar
  11. Chará J, Camargo JC, Calle Z, Bueno L, Murgueitio E, Arias L, Dossman M, Molina EJ (2015) Servicios ambientales de Sistemas Silvopastoriles Intensivos: mejora en propiedades del suelo y restauración ecológica. In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas Agroforestales. Funciones productivas, socioeconómicas y ambientales. Serie Técnica Informe Técnico 402, CATIE, Turrialba, Fundación CIPAV, Cali, pp 331–347Google Scholar
  12. Curry C (2009) The consumption of atmospheric methane by soil in a simulated future climate. Biogeosciences 6:2355–2367CrossRefGoogle Scholar
  13. de Figueiredo EB, Panosso AR, Reicosky DC, La Scala N (2015) Short-term CO2-C emissions from soil prior to sugarcane (Saccharum spp.) replanting in southern Brazil. GCB Bioenergy 7:316–327CrossRefGoogle Scholar
  14. de Klein CAM, Ledgard SF (2005) Nitrous oxide emissions from New Zealand agriculture—key sources and mitigation strategies. Nutr Cycl Agroecosys 72:77–85CrossRefGoogle Scholar
  15. de Klein CAM, Li Z, Sherlock RR (2004) Determination of the N2O emission factor from animal excreta or urea, following a winter application in two regions of New Zealand. Report for MAF policy. https://www.mpi.govt.nz/document-vault/2933. Accessed 20 May 2016
  16. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Mand S, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Chen Z, Marquis N, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 128–234Google Scholar
  17. Galbally IE, Meyer MCP, Wang Y, Smith CJ, Weeks IA (2010) Nitrous oxide emissions from a legume pasture and the influences of liming and urine addition. Agric Ecosyst Environ 136:262–272CrossRefGoogle Scholar
  18. Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G (2013) Tackling climate change through livestock—a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome, p 139Google Scholar
  19. Harrison MT, McSweeney C, Tomkins NW, Eckard RJ (2015) Improving greenhouse gas emissions intensities of subtropical and tropical beef farming systems using Leucaena leucocephala. Agric Syst 136:138–146CrossRefGoogle Scholar
  20. Hendriks DMD, van Huissteden J, Dolman AJ, van der Molen MK (2007) The full greenhouse gas balance of an abandoned peat meadow. Biogeosciences 4:411–424CrossRefGoogle Scholar
  21. Herrero M, Henderson B, Havlik P, Thornton PK, Conant RT, Smith P, Wirsenius S, Hristov AN, Gerber P, Gill M, Butterbach-Bahl K, Valin H, Garnett T, Stehfest E (2016) Greenhouse gas mitigation potentials in the livestock sector. Nat Clim Chang 6:452–461CrossRefGoogle Scholar
  22. Holdridge LR (1967) Life zone ecology. Tropical SCIENCE Centre, San JoseGoogle Scholar
  23. Hristov AN, Oh J, Lee C, Meinen R, Montes F, Ott T, Firkins J, Rotz A, Dell C, Adesogan A, Yang W, Tricarico J, Kebreab E, Waghorn G, Dijkstra J, Oosting S (2013) Animal production and health paper No. 177. In: Gerber PJ, Henderson B, Makkar HP (eds) Mitigation of greenhouse gas emissions in livestock production—a review of technical options for non-CO2 emissions. FAO, RomeGoogle Scholar
  24. Hu H-W, Chen D, He J-Z (2015) Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiol Rev 39:729–749CrossRefGoogle Scholar
  25. Ibrahim M, Guerra L, Casasola F, Neely N (2010) Importance of silvopastoral systems for mitigation of climate change and harnessing of environmental benefits. In: Abberton M, Conant R, Batello C (eds) Grassland carbon sequestration: management, policy and economics. Proceedings of the workshop on the role of grassland carbon sequestration in the mitigation of climate change. Integrated Crop Management, vol 11. FAO, Roma, Italy, pp 189–196Google Scholar
  26. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) (1999) NTC 4657. Alimento para animales. Determinación del contenido de nitrógeno y cálculo del contenido de proteína cruda. Método Kjeldahl. BogotáGoogle Scholar
  27. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) (2005) NTC 5350. Calidad del suelo. Determinación del Fósforo disponible. Instituto Colombiano de Normas Técnicas y Certificación. BogotáGoogle Scholar
  28. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) (2006) NTC 5402. Calidad del suelo. Determinación del Azufre. Instituto Colombiano de Normas Técnicas y Certificación. BogotáGoogle Scholar
  29. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) (2008a) NTC 5264. Calidad del suelo. Determinación del pH en suelos. Instituto Colombiano de Normas Técnicas y Certificación. BogotáGoogle Scholar
  30. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) (2008b) NTC 5403. Calidad del suelo. Determinación del Carbono Orgánico. Instituto Colombiano de Normas Técnicas y Certificación. BogotáGoogle Scholar
  31. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) (2008c) NTC 5349. Determinación de las bases intercambiables: los cationes Calcio, Magnesio, Sodio y Potacio. Método de extracción con Acetato de Amonio 1 N y pH 7. Instituto Colombiano de Normas Técnicas y Certificación. BogotáGoogle Scholar
  32. Instituto Geográfico Agustín Codazzi (IGAC) (2006) Métodos analíticos del laboratorio de suelos IGAC Subdirección de Agrología. VI Edición, BogotáGoogle Scholar
  33. IPCC (Intergovernmental Panel on Climate Change) (2006) 2006 IPCC Guideline for National Greenhouse Inventories. Intergovernmental Panel on Climate Change IPCC, France, Paris (IPCC/OECD/IEA)Google Scholar
  34. Kim DS, Kim JC (2002) Soil nitric and nitrous oxide emissions from agricultural and tidal flat fields in southwestern Korea. J Environ Eng Sci 1:359–369CrossRefGoogle Scholar
  35. Korir D, Goopy J, Gachuiri C, Butterbach-Bahl K (2015) Supplementation with Calliandra calothyrsus improves N retention in cattle fed low protein diets. Anim Prod Sci 5:619–626Google Scholar
  36. Kumar BM, George SJ, Jamaludheen V, Suresh TK (1998) Comparison of biomass production, tree allometry and nutrient use efficiency of multipurpose trees grown in woodlot and silvopastoral experiments in Kerala, India. For Ecol Manag 112:145–163CrossRefGoogle Scholar
  37. Lai DYF (2009) Methane dynamics in northern peatlands: a review. Pedosphere 19:409–421CrossRefGoogle Scholar
  38. Lambie SM, Schipper LA, Balks MR, Baisden WT (2012) Solubilisation of soil carbon following treatment with cow urine under laboratory conditions. Soil Res 50(1):50–57CrossRefGoogle Scholar
  39. Lang M, Cai ZC, Chang SX (2011) Effects of land use type and incubation temperatura on greenhouse gas emissions from Chinese and Canadian Soils. J Soils Sediments 11(1):15–24CrossRefGoogle Scholar
  40. Laville P, Lehuger S, Loubet B, Chaumartin F, Cellier P (2011) Effect of management, climate and soil conditions on N2O and NO emissions from an arable crop rotation using high temporal resolution measurements. Agric For Meteorol 15:1228–12240Google Scholar
  41. Li YY, Dong SK, Liu S, Zhou H, Gao Q, Cao G, Wang X, Su X, Zhang Y, Tang L, Zhao H, Wu X (2015) Seasonal changes of CO2, CH4 and N2O fluxes in different types of alpine grassland in the Qinghai-Tibetan Plateau of China. Soil Biol Biochem 80:306–314CrossRefGoogle Scholar
  42. Linquist B, Van Groenigen KJ, Adviento-Borbe MA, Pittelkow C, Van Kessel C (2012) An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob Chang Biol 18:194–209CrossRefGoogle Scholar
  43. Luo J, Lindsey SB, Ledgard SF (2008) Nitrous oxide emissions from animal urine application on a New Zealand pasture. Biol Fertil Soils 44:463–470CrossRefGoogle Scholar
  44. Luo J, de Klein CAM, Ledgard SF, Saggar S (2010) Management options to reduce nitrous oxide emissions from intensively grazed pastures: a review. Agric Ecosyst Environ 136:282–291CrossRefGoogle Scholar
  45. Medvedeff CA, Bridgham SD, Pfeifer-Meister L, Keller JK (2015) Can Sphagnum leachate chemistry explain differences in anaerobic decomposition in peatlands? Soil Biol Biochem 86:34–41CrossRefGoogle Scholar
  46. Meng Q, Sun Y, Zhao J, Zhou L, Ma X, Zhou M, Gao W, Wang G (2014) Distribution of carbon and nitrogen in water-stable aggregates and soil stability under long-term manure application in solonetzic soils of the Songnen plain, northeast China. J Soils Sediments 14(6):1041–1049CrossRefGoogle Scholar
  47. Merbold L, Steinlin C, Hagedorn F (2013) Winter greenhouse gas emissions (CO2, CH4 and N2O) from a sub-alpine grassland. Biogeosci Discuss 10:401–445CrossRefGoogle Scholar
  48. Minamikawa K, Tokida T, Sudo S, Padre A, Yagi K (2015) Guidelines for measuring CH4 and N2O emissions from rice paddies by a manually operated closed chamber method. National Institute for Agro-Environmental Sciences, TsukubaGoogle Scholar
  49. Molina IC, Angarita EA, Mayorga OL, Chará J, Barahona R (2016) Effect of Leucaena leucocephala on methane production of Lucerna heifers fed a diet based on Cynodon plectostachyus. Livest Sci 185:24–29CrossRefGoogle Scholar
  50. Muñoz C, Saggar S, Berben P, Giltrap D, Jha N (2011) Influence of waiting time after insertion of base chamber into soil on produced greenhouse gas fluxes. Chil J Agric Res 71(4):610–614CrossRefGoogle Scholar
  51. Murgueitio E, Chará JD, Barahona R, Cuartas CA, Naranjo JF (2014) Intensive silvopastoral systems (ISPS), mitigation and adaptation tool to climate change. Trop Subtrop Agroecosyst 17(3):501–507Google Scholar
  52. Murgueitio E, Barahona R, Chará J, Flores M, Mauricio RM, Molina JJ (2015a) The intensive silvopastoral systems in Latin America: sustainable alternative to face climatic change in animal husbandry. Cuban J Agric Sci 49(4):541–554Google Scholar
  53. Murgueitio E, Flores M, Calle Z, Chará J, Barahona R, Molina CH, Uribe F (2015b) Productividad en Sistemas silvopastoriles intensivos en América Latina. In: Montangnini F, Somattiba E, Murgueitio E, Fasola H, Eibl B (eds) Sistemas agroforestales. Funciones productivas, socioeconómicas y ambientales. CIPAV, Cali, pp 59–101Google Scholar
  54. Nair PKR, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23CrossRefGoogle Scholar
  55. Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. Adv Agron 108:237–307CrossRefGoogle Scholar
  56. Oertel C, Matschullat J, Zurba K, Zimmermann K, Erasmi S (2016) Greenhouse gas emissions from soils—a review. Chemie der Erde –Geochemistry 76(3):327–352CrossRefGoogle Scholar
  57. Orwin KH, Bertram JE, Clough TJ, Condron LM, Sherlock RR, O’Callaghan M, Ray J, Baird DB (2010) Impact of bovine urine deposition on soil microbial activity, biomass, and community structure. Appl Soil Ecol 44:89–100CrossRefGoogle Scholar
  58. Pastrana I, Reza S, Espinosa M, Suárez E, Díaz E (2011) Efecto de la fertilización nitrogenada en la dinámica del óxido nitroso y metano en Brachiaria humidicola (Rendle) Schweickerdt. Corpoica Cienc Tecnol Agropecu 12(2):134–142CrossRefGoogle Scholar
  59. Rafique R, Hennessy D, Kiely G (2011) Nitrous oxide emission from grazed grassland under different management systems. Ecosystems 14:563–582CrossRefGoogle Scholar
  60. Reay D, Grace J (2007) Carbon dioxide: importance, sources and sinks. In: Reay D et al (eds) Greenhouse gas sinks. CAB International, Wallingford, pp 1–10CrossRefGoogle Scholar
  61. Rivera J, Chará J, Barahona R (2016) Análisis de ciclo de vida para la producción de leche bovina en un sistema silvopastoril intensivo y un sistema convencional en Colombia. Trop Subtrop Agroecosyst 19:237–251Google Scholar
  62. Rivera J, Molina I, Chará J, Murgueitio E, Barahona R (2017) Intensive silvopastoral systems with Leucaena leucocephala (Lam) de Wit: productive alternative in the tropic in view of climate change. Pastos y Forrajes 40:159–170Google Scholar
  63. Saggar S, Andrew RM, Tate KR, Hedley CB, Rodda NJ, Townsend JA (2004) Modelling nitrous oxide emissions from dairy grazed pastures. Nutr Cycl Agroecosys 68:243–255CrossRefGoogle Scholar
  64. Senbayram M, Chen R, Budai A, Bakken L, Dittert K, Zavattaro L, Grignani C, Acutis M, Rochette P (2012) N2O emission and the N2O/(N2O + N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations. Agric Ecosyst Environ 147:4–12CrossRefGoogle Scholar
  65. Sherlock RR, de Klein CAM, Li Z (2003) Determination of the N2O and CH4 emission factor from animal excreta, following a summer application in 3 regions of New Zealand. Report for MAF policy. https://www.mpi.govt.nz/document-vault/2950. Accessed 20 May 2017
  66. Sordi A, Dieckow J, Bayer C, Albuquerque MA, Piva JT, Zanatta JA, Tomazi M, Rosa CM, Moraes A (2014) Nitrous oxide emission factors for urine and dung patches in a subtropical Brazilian pastureland. Agric Ecosyst Environ 90:94–103CrossRefGoogle Scholar
  67. Statistical Analysis System (SAS) (2001) SAS/STAT user’s guide, Software Versión 9.1. SAS institute Inc, CaryGoogle Scholar
  68. Uchida Y, Clough TJ, Kelliher FM, Hunt JM, Sherlock RR (2011) Effects of bovine urine, plants and temperature on N2O and CO2 emissions from a sub-tropical soil. Plant Soil 345:171–186CrossRefGoogle Scholar
  69. Valadares RFD, Broderick GA, Valadares SC, Clayton MK (1999) Effect of replacing alfalfa silage with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives. J Dairy Sci 82:2686–2696CrossRefGoogle Scholar
  70. Van der Weerden TJ, Luo JF, de Klein CAM, Hoogendoorn CJ, Littlejohn RP, Rys GJ (2011) Disaggregating nitrous oxide emission factors for ruminant urine and dung deposited onto pastoral soils. Agric Ecosyst Environ 141(3–4):426–436CrossRefGoogle Scholar
  71. Van der Weerden TJ, Manderson A, Kelliher FM, de Klein CAM (2014) Spatial and temporal nitrous oxide emissions from dairy cattle urine deposited onto grazed pastures across New Zealand based on soil water balance modelling. Agric Ecosyst Environ 189:92–100CrossRefGoogle Scholar
  72. Van Groenigen JW, Kuikman PJ, de Groot WJM, Velthof GL (2005) Nitrous oxide emissions from urine-treated soil as influenced by urine composition and soil physical conditions. Soil Biol Biochem 37:463–473CrossRefGoogle Scholar
  73. Wachendorf C, Lampe C, Taube F, Dittert K (2008) Nitrous oxide emissions and dynamics of soil nitrogen under 15N-labeled cow urine and dung patches on a sandy grassland soil. J Plant Nutr Soil Sci 171:171–180CrossRefGoogle Scholar
  74. Whitehead DC (1995) Grassland nitrogen. CAB International, WallingfordGoogle Scholar
  75. Williams DL, Ineson P, Coward PA (1999) Temporal variations in nitrous oxide fluxes from urine-affected grassland. Soil Biol Biochem 31:779–788CrossRefGoogle Scholar
  76. Wu X, Yao Z, Bruggemann N, Shen ZY, Wolf B, Dannenmann M, Zheng X, Butterbach-Bahl K (2010) Effects of soil moisture and temperature on CO2 and CH4 soil e atmosphere exchange of various land use/cover types in a semiearid grassland in Inner Mongolia, China. Soil Biol Biochem 42:773–787CrossRefGoogle Scholar
  77. Ye R, Doane TA, Morris J, Horwath WR (2015) The effect of rice straw on the priming of soil organic matter and methane production in peat soils. Soil Biol Biochem 81:98–107CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro para la Investigación en Sistemas Sostenibles de Producción Agropecuaria – CIPAVCaliColombia
  2. 2.Departamento de Producción Animal, Facultad de Ciencias AgrariasUniversidad Nacional de Colombia, Sede MedellínMedellínColombia

Personalised recommendations