Agroforestry Systems

, Volume 93, Issue 3, pp 885–899 | Cite as

Effects of alternative silvicultural systems on litter decomposition and nutrients dynamics in sub-Antarctic forests

  • N. Oro CastroEmail author
  • A. Moretto
  • L. J. Selzer
  • J. Escobar


Forest harvesting is one of the main economic practices in South Patagonia. The impacts produced by forest harvesting have been studied by numerous investigations. And it is known that forest harvesting affects the decomposition of soil organic matter. However, there is no data about how the harvesting by variable-retentions affect this decomposition. Our objective was to determine how impact variable-retention upon decomposition and nutrient release in Nothofagus pumilio forest soils. We hypothesized that variable-retention accelerate decomposition and nutrient release. We compared primary and harvested forests with two types of retentions (aggregated and dispersed) and two times [1 and 5 years after harvesting (YAH)]. To measure litter decomposition, we used bag technique for to determine organic matter loss. We determined carbon; nitrogen; calcium; potassium; magnesium and lignin concentrations in decomposing material. We analysed the data using linear mixed models ANOVA. Decomposition rates were estimated as derivate of the linear mixed model for the logarithm of the remaining leaf litter weight. We found that dispersed retentions treatment had the highest decomposition rates. Primary forest and aggregated retentions had the smaller slopes of the decomposition model. Dispersed and aggregated retention 5 YAH retained more nitrogen compared to primary forest. Dispersed retention 5 YAH had the lowest C/N ratio. Primary forest had higher Lignin/N ratio at 540 incubation days. Dispersed retention 5 YAH released more phosphorus compared to primary forest. Dispersed and aggregated retention 1 YAH had higher C/P ratio. Dispersed retention 5 YAH presented the most mineralization of potassium in the initial time of decomposition. We conclude that the harvesting by variable-retentions had an immediate negative effect on litter decomposition and the nutrients dynamics.


Forest harvesting Variable-retention Nothofagus pumilio Decomposition Nutrients 



We thank Sr. Roberto Fernández and Eng. Ricardo Vukasovic for their logistic assistance and Dr. Guillermo Martínez Pastur for his scientific and technical advice. We also like to thank the constructive criticism of an anonymous reviewer that greatly improved this manuscript. This study was funded by the Agencia Nacional de Promoción Científica y Tecnológica (PAV2004-22428 and PICTO FORESTAL-36861). N. Oro Castro and L. J. Selzer were recipient of a CONICET doctoral scholarship.


  1. Aerts R, Caluwe HD (1997) Nutritional and plant-mediated controls on leaf litter decomposition of Carex species. Ecology 78:244–260CrossRefGoogle Scholar
  2. Alfonso JL (1942) Los bosques de Tierra del Fuego. Rev Suelo Argent 1:47–51Google Scholar
  3. Anderson DR (2008) Model based inference in the life sciences: a primer on evidence. Springer, New York, p 184CrossRefGoogle Scholar
  4. Bahamonde HA, Peri PL, Martínez Pastur G, Lencinas V (2009) Variaciones microclimáticas en bosques primarios y bajo uso silvopastoril de Nothofagus antarctica en dos Clases de Sitio en Patagonia SurGoogle Scholar
  5. Bahamonde HA, Peri PL, Alvarez R, Barneix A, Moretto A, Martínez Pastur G (2012) Litter decomposition and nutrients dynamics in Nothofagus antarctica forests under silvopastoral use in Southern Patagonia. Agrofor Syst 84:345–360CrossRefGoogle Scholar
  6. Barrera MD, Frangi JL, Ferrando JJ, Goya JF (2004) Descomposición del mantillo y liberación foliar neta de nutrientes de Austrocedrus chilensis (D. Don) Pic. Serm. Et Bizzarri en El Bolsón, Río Negro. Ecol Austral 14:99–112Google Scholar
  7. Beese WJ, Bryant AA (1999) Effect of alternative silvicultural systems on vegetation and bird communities in coastal montane forests of British Columbia, Canada. For Ecol Manage 115:231–242CrossRefGoogle Scholar
  8. Berg B, Laskowski R (1997) Changes in nutrient concentrations and nutrient release in decomposing needle litter in monocultural systems of Pinus contorta and Pinus sylvestris: a comparison and synthesis. Scand J For Res 12:113–121CrossRefGoogle Scholar
  9. Berg B, McClaugherty C (2008) Plant litter: decomposition, humus formation, carbon sequestration, 2a edn. Springer, Berlin, p 338CrossRefGoogle Scholar
  10. Bitterlich W (1984) The relascope idea. Relative measurements in forestry. Commonwealth Agricultural Bureaux, Londres, p 242Google Scholar
  11. Bocock K, Gilbert O, Capstick C, Twinn D, Waid J, Woodman M (1960) Changes in leaf litter when placed on the surface of soils with contrasting humus types. I. Losses in dry weight of ok and ash leaf litter. J Soil Sci 11:1–9CrossRefGoogle Scholar
  12. Brancaleoni L, Strelin J, Gerdol R (2003) Relationships between geomorphology and vegetation patterns in subantarctic Andean tundra of Tierra del Fuego. Polar Biol 26(6):404–410Google Scholar
  13. Brandt LA, King JY, Milchunas DG (2007) Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem. Glob Change Biol 13:2193–2205CrossRefGoogle Scholar
  14. Caldentey J, Ibarra M, Hernández J (2001) Litter fluxes and decomposition in Nothofagus pumilio stands in the region of Magallanes, Chile. For Ecol Manage 148:145–157CrossRefGoogle Scholar
  15. Collado L (2001) Los bosques de Tierra del Fuego: análisis de su estratificación mediante imágenes satelitales para el inventario forestal de la provincia. Multequina 10:1–15Google Scholar
  16. Deferrari G, Camilion C, Martínez Pastur G, Peri P (2001) Changes in Nothofagus pumilio forest biodiversity during the forest management cycle: 2 birds. Biodiv Conserv 10:2093–2108CrossRefGoogle Scholar
  17. Dirección de Bosques TDF (2016) Informe de estadísticas de aprovechamiento forestal correspondiente al período 2015–2016 and análisis comparativo de estadísticas históricasGoogle Scholar
  18. Ehrenfeld JG, Kourtev P, Huang W (2001) Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecol Appl 11(5):1287–1300CrossRefGoogle Scholar
  19. Fisher RF, Binkley D (2000) Ecology and management of forest soils. Wiley, New York, p 362Google Scholar
  20. Frangi JL, Barrera MD, Richter LL, Lugo AE (2005) Nutrient cycling in Nothofagus pumilio forest along and altitudinal gradient in Tierra del Fuego, Argentina. For Ecol Manage 217:80–94CrossRefGoogle Scholar
  21. Franklin JF, Berg DR, Thornburgh DA, Tappeiner JC (1997) Alternative silvicultural approaches to timber harvesting. In: Kohm KA, Franklin JF (eds) Creating a forestry for the 21st century. The science of ecosystem management. Island Press, Washington, DC, pp 111–139Google Scholar
  22. Gallardo A, Merino J (1993) Leaf decomposition in two Mediterranean ecosystems of southwest Spain: influence of substrate quality. Ecology 74:152–161CrossRefGoogle Scholar
  23. Gea G, Martínez Pastur G, Cellini JM, Lencinas MV (2004) Forty years of silvicultural management in southern Nothofagus pumilio (Poepp. et Endl.) Krasser primary forests. For Ecol Manage 201(2–3):335–347Google Scholar
  24. Gilliam F, Yurish B, Adams M (2001) Temporal and spatial variation of nitrogen transformation in nitrogen-saturated soil of a central Appalachian hardwood forest. Can J For Res 32:1768–1785CrossRefGoogle Scholar
  25. Godeas M, Arambarri A, Gamundi I, Spinedi H (1985) Descomposición de la hojarasca en bosque de Lenga. Ciencias Suelo 3(1–2):68–77Google Scholar
  26. Harmon M, Nadelhoffer K, Blair J (1999) Measuring decomposition, nutrient turnover and stores in plant litter. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, New York, pp 202–271Google Scholar
  27. Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522CrossRefGoogle Scholar
  28. Ibarra M, Caldentey J, Promis A (2011) Descomposición de hojarasca en rodales de Nothofagus pumilio de la región de Magallanes. Bosque 32(3):227–233CrossRefGoogle Scholar
  29. Idol TW, Pope PE, Ponder F (2003) N mineralization, nitrification, and N uptake across a 100–year chronosequence of upland hardwood forests. For Ecol Manage 176:509–518CrossRefGoogle Scholar
  30. IUSS Working Group WRB (2006) World reference base for soil resources, 2nd edn. World Soil Resources Reports No. 103. FAO, Rome, 133 ppGoogle Scholar
  31. Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manage 140:227–238CrossRefGoogle Scholar
  32. Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450CrossRefGoogle Scholar
  33. Laskowski R, Berg B, Johansson M, McClaugherty C (1995a) Release pattern for potassium from decomposing forest leaf litter. Long-term decomposition in a Scots pine forest X. Can J Bot 73:2019–2027CrossRefGoogle Scholar
  34. Laskowski R, Niklinska M, Maryañski M (1995b) The dynamics of chemical elements in forest litter. Ecology 76:1393–1406CrossRefGoogle Scholar
  35. Martinez Pastur G, Lencinas MV (2005) El manejo forestal en los bosques de Nothofagus pumilio en Tierra del Fuego. IDIA XXI 01 5(8):107–110Google Scholar
  36. Martínez Pastur G, Cellini JM, Peri PL, Vukasovic RF, Fernández MC (2000a) Timber production of Nothofagus pumilio forests by a shelterwood system in Tierra del Fuego (Argentina). For Ecol Manage 134:153–162CrossRefGoogle Scholar
  37. Martínez Pastur G, Lencinas MV, Vukasovic R, Peri P, Diaz B, Cellini JM (2000a) Turno de corta y posibilidad de los bosques de lenga de Tierra del Fuego (Argentina) considerando la influencia del ganado, el manejo silvícola and la calidad de sitio. Actas Reunión Internacional: Modelos and Métodos estadísticos Aplicados a Bosques Naturales. Valdivia, Chile, pp 20–21Google Scholar
  38. Martínez Pastur G, Lencinas MV, Cellini J, Diaz B, Peri P, Vukasovic R (2002a) Herramientas disponibles para la construcción de un modelo de producción para la lenga (Nothofagus pumilio) bajo manejo en un gradiente de calidades de sitio. Bosque 23(2):69–80CrossRefGoogle Scholar
  39. Martínez Pastur G, Peri P, Fernández M, Staffieri G, Lencinas MV (2002b) Changes in understory species diversity during the Nothofagus pumilio forest management cycle. J For Res 7(3):165–174CrossRefGoogle Scholar
  40. Martínez Pastur GJ, Lencinas MV, Peri PL, Moretto A, Cellini JM, Vukasovic R (2007) Harvesting adaptation to biodiversity conservation in sawmill industry: technology innovation and monitoring program. Technol Manag Innov 2(3):58–70Google Scholar
  41. Martínez Pastur G, Cellini JM, Peri P, Lencinas MV, Gallo E, Soler Esteban R (2009) Alternative silviculture with variable retention in timber management of South Patagonia. For Ecol Manage 258:436–443CrossRefGoogle Scholar
  42. Martínez Pastur G, Cellini JM, Lencinas MV, Barrera M, Peri P (2011) Environmental variables influencing regeneration of Nothofagus pumilio in a system with combined aggregated and dispersed retention. For Ecol Manage 261:178–186CrossRefGoogle Scholar
  43. Martínez Pastur G, Soler Esteban R, Pulido F, Lencinas MV (2013) Variable retention harvesting influences biotic and abiotic drivers along the reproductive cycle in southern Patagonian forests. For Ecol Manage 289(1):106–114CrossRefGoogle Scholar
  44. Mitchell SJ, Beese WJ (2002) The retention system: reconciling variable retention with the principles of silvicultural systems. For Chron 78(3):397–403CrossRefGoogle Scholar
  45. Moretto A, Martínez Pastur G (2014) Litterfall and leaf decomposition in Nothofagus pumilio forests along an altitudinal gradient in Tierra del Fuego, Argentina. J For Sci 60(12):500–510CrossRefGoogle Scholar
  46. Moretto A, Martínez Pastur G, Peri P (2004) Producción de hojarasca en diferentes sistemas de regeneración con retención dispersa y agregada en bosques de Nothofagus pumilio. Actas del Segundo Congreso Chileno de Ciencias Forestales. Valdivia, Chile, 7 ppGoogle Scholar
  47. Nóvoa Muñoz JC, Pontevedra Pombal X, Moretto A, Martínez Cortizas A, García-Rodeja Gayoso E (2007) Caracterización geoquímica de suelos forestales de Nothofagus pumilio (lenga) en un gradiente altitudinal en Tierra del Fuego, Argentina. In: Bellinfante N, Jordán A (eds) Tendencias Actuales de la Ciencia del Suelo. Actas del II Congreso Ibérico de Ciencia del Suelo, pp 689–696Google Scholar
  48. Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:331–332CrossRefGoogle Scholar
  49. Oro Castro, N. 2014. ¿Cómo varían los ciclos biogeoquímicos debido al aprovechamiento forestal en bosques de Nothofagus pumilio de Tierra del Fuego? Tesis de Doctorado en Biología. Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina. p 137Google Scholar
  50. Osono T, Takeda H (2004) Potassium, calcium and magnesium dynamics during litter decomposition in a cool temperate forest. J For Res 9:23–31CrossRefGoogle Scholar
  51. Peña-Rodríguez S, Moretto A, Pontevedra-Pombal X, Oro N, García-Rodeja Gayoso E, Rodríguez-Salgado I, Rodríguez-Racedo J, Escobar J, Nóvoa-Muñoz JC (2013) Trends in nutrient reservoirs stored in uppermost soil horizons of subantarctic forests differing in their structure. Agrofor Syst 87(6):1273–1281CrossRefGoogle Scholar
  52. Pinheiro J, Bates DM (2000) Mixed-effects models in S and S-PLUS, 1st edn. Springer, New York, p 530CrossRefGoogle Scholar
  53. Prescott CE (2005) Decomposition and mineralization of nutrients from litter and humus. In: Nutrient acquisition by plants. Springer, Berlin, pp 15–41Google Scholar
  54. R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0.
  55. Richter L, Frangi J (1992) Bases ecológicas para el manejo del bosque de Nothofagus pumilio de Tierra del Fuego. Revista de la Facultad de Agronomía, La Plata. 68: 35–52Google Scholar
  56. Ritter E, Starr M, Vesterdal L (2005) Losses of nitrate from gaps of different sizes in a managed beech (Fagus sylvatica) forest. Can J For Res 35:308–319CrossRefGoogle Scholar
  57. Schmidt H, Urzúa A (1982) Transformación y manejo de los bosques de Lenga en Magallanes. Universidad de Chile. Ciencias Agrícolas 11. 62 ppGoogle Scholar
  58. Spagarino C, Martínez Pastur G, Peri P (2001) Changes in Nothofagus pumilio forest biodiversity during the forest management cycle: insects. Biodivers Conserv 10:2077–2092CrossRefGoogle Scholar
  59. Suffling R, Smith D (1974) Litter decomposition studies using mesh bags: spillage inaccuracies and the effects of repeated artificial drying. Can J Bot 52:2157–2163CrossRefGoogle Scholar
  60. Sullivan TP, Sullivan DS, Lindgren PMF (2001) Stand structure and small mammals in young lodgepole pine forest: 10-year results after thinning. Ecol Appl 11:1151–1173CrossRefGoogle Scholar
  61. Swift M, Heal O, Anderson J (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley, p 372Google Scholar
  62. Tukhanen S (1992) The climate of Tierra del Fuego from a vegetation geographical point of view and its ecoclimatic counterparts elsewhere. Acta Bot Fenn 145:1–64Google Scholar
  63. Van Soest PJ (1963) Use of detergents in analysis of fibrous feeds II: a rapid method for the determination of fiber and lignin. Ann Chem 46:829–835Google Scholar
  64. Vitousek PM, Turner DR, Parton WJ, Sanford RL (1994) Litter decomposition on the Mauna-Loa environmental matrix, Hawaii—patterns, mechanisms, and models. Ecology 72:418–429CrossRefGoogle Scholar
  65. Vivanco L, Austin AT (2008) Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. J Ecol 96:727–736CrossRefGoogle Scholar
  66. Vukasovic R, Martínez Pastur G, Cellini JM (2004) Plan de manejo forestal Los Cerros. Solicitante Aserradero Kareken (PRODIN SRL)Google Scholar
  67. Yin X, Perry JA, Dixon RK (1989) Influence of canopy removal on oak forest floor decomposition. Can J For Res 19:204–214CrossRefGoogle Scholar
  68. Yoshida T, Iga Y, Ozawa M, Noguchi M, Shibata H (2005) Factors influencing early vegetation establishment following soil scarification in a mixed forest in northern Japan. Can J For Res 35:175–188CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.CADIC-CONICETUshuaiaArgentina
  2. 2.Instituto de Ciencias Polares, Ambiente y Recursos NaturalesUniversidad Nacional de Tierra del FuegoUshuaiaArgentina

Personalised recommendations