Antioxidant and antimicrobial capacity of three agroindustrial residues as animal feeds

  • Enrique D. Archundia Velarde
  • Dora L. Pinzón Martínez
  • Abdelfattah Z. M. Salem
  • Patricia G. Mendoza García
  • María D. Mariezcurrena BerasainEmail author


Currently, different countries’ policies prohibit the use of synthetic antibiotics in animal production. As a consequence, researchers have been looking for sources of these molecules in plants, vegetables, and agro-industrial waste in order to inhibit pathogenic microorganisms, such as Escherichia coli, Salmonella and Listeria and control livestock health. Hydro-alcoholic extracts of the leaves of three different plants- Avocado (Persea americana Mill) Hass variety, guava (Psidium guajava L.) Calvillo variety, and cherry plum (Prunus cerasifera Ehrh) Pissardii variety, at three different ethanol:water ratios (20:80, 50:50, and 80:20 volume/volume) were analyzed. Total phenols in the extracts were quantified by the Folin-Ciocalteu Method and the inhibitory spectrum test against Gram+: Listeria monocytogenes ATCC 19115, Bacillus subtilis ATCC 662, Enterococcus sp., Staphylococcus sp. and Gram−: Escherichia coli ATCC 25922, Salmonella enterica serotipo Enteriditis ATCC 13076, Klebsiella sp. and Pseudomonas sp. using the agar well-diffusion method. The highest phenol content and antioxidant capacity were found in the guava leaf extract at 50:50 (111.7 ± 8.8 EAG mg/mL dry matter, 450 ± 3 μM TE/g dry matter), and this was the only extract that showed total inhibitory spectrum activity for all the microorganisms evaluated among the extracts tested, with a range of 0.62–1.25 mg/mL minimal inhibitory capacity (MIC). A hydroalcoholic extract of guava leaves had strong antimicrobial activity against different pathogenic microorganisms and could be considered as a potential alternative to synthetic antibiotics for use in animal production.


Hydroalcoholic extract Agroindustrial waste Total phenols Saponin Antioxidant capacity Antimicrobial capacity 



Authors would like to thank the Consejo Nacional de Ciencia y Tecnología (CONACYT) for providing a scholarship to the main author. Thanks to the Facultad de Ciencias Agrícolas at the Universidad Autónoma del Estado de México, Estado de México, México for Access to laboratories to carry out the study and to the Unidad de Investigación y Desarrollo en Alimentos (UNIDA) of the Instituto Tecnológico de Veracruz, Veracruz, México for access to the microbial strains and microbiology laboratory.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. Akyildiz S, Denli M (2016) Application of plant extracts as feed additives in poultry nutrition. Ser D Anim Sci 59:72–74Google Scholar
  2. Amyrgialaki E, Makris DP, Mauromoustakos A, Kefalas P (2014) Optimization of the extraction of pomegranate (Punica granatum) husk phenolic using water/ethanol solvent systems and response surface methodology. Ind Crops Prod 59:216–222. CrossRefGoogle Scholar
  3. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48(suppl. S1):5–16CrossRefGoogle Scholar
  4. Arizmendi-Cotero D, Gómez-Espinoza RM, Dublán-García O, Gómez-Vidales V, Domínguez-López A (2016) Electron paramagnetic resonance study of hydrogen peroxide/ascorbic acid ratio as initiator redox pair in the inulin-gallic acid molecular grafting reaction. Carbohydr Polym 136:350–357CrossRefGoogle Scholar
  5. Baljett SY, Simmy G, Ritika Y, Roshanlal Y (2015) Antimicrobial activity of individual and combined extracts of selected spices against some pathogenic and food spoilage microorganisms. Food Res Int 22(6):2594–2600Google Scholar
  6. Barrington GM, Gay JM, Evermann JF (2002) Biosecurity for neonatal gastrointestinal diseases. Vet Clin Food Anim 18:7–34. CrossRefGoogle Scholar
  7. Biswas B, Rogers K, McLaughlin F, Daniels D, Yadav A (2013) Antimicrobial activities of leaf extracts of guava (Psidium guajava L.) on two gram-negative and gram-positive bacteria. Int J Microbiol. Google Scholar
  8. Camarena-Tello JC, Martínez-Flores HE, Garnica-Romo MG, Padilla-Ramírez JS, Saavedra-Molina A, Alvarez-Cortes O, Bartolomé-Camacho MC, Rodile-López JO (2018) Quantification of phenolic compounds and in vitro radical scavenging abilities with leaf extracts from two varieties of Psidium guajava L. Antioxidants 7(34):1–12. Google Scholar
  9. Chen FF, Sang J, Zhang Y, Sang J (2018) Development of a green two-dimensional HPLC-DAD/ESI-MS method for the determination of anthocyanins from Prunus cerasifera var. atropurpurea leaf and improvement of their stability in energy drinks. Int J Food Sci Technol. Google Scholar
  10. CLSI Clinical and Laboratory Standar Institute (2012) Performance standards for antimicrobial disk susceptibility tests. Approved standard, 7th edn, document M02-A11, vol 32, no 1. Accessed 22 June 2018Google Scholar
  11. Commission European (2003) Regulation of the European parlament and the council of additives for use in animal nutrition. Off J Eur Union 268:29–43Google Scholar
  12. Díaz-de-Cerio E, Gómez-Caravaca AM, Verardo V, Fernández-Gutiérrez A, Segura-Carretero A (2016) Determination of guava (Psidium guajava L.) leaf phenolic compounds using HPLC-DAD-QTOF-MS. J Funct Foods 22:376–388. CrossRefGoogle Scholar
  13. Domingo D, López-Brea M (2003) Plantas con acción antimicrobiana. Rev Esp Quimioter 16(4):385–393Google Scholar
  14. Frankič T, Voljč M, Salobir J, Rezar V (2009) Use of herbs and spices and their extracts in animal nutrition. Acta Agric Slov 94(2):95–102Google Scholar
  15. Geetha M, Palanivel KM (2018) A brief review on salmonellosis in poultry. Int J Curr Microbiol Appl Sci 7(05):1269–1274. CrossRefGoogle Scholar
  16. Gorinstein M, Leontowicz H, Leontowicz M, Namiesnik J, Najman K, Drzewiecki J, Cvikrová M, Martincová O, Katrich E, Trakhtenberg S (2008) Comparison of the main bioactive compounds and antioxidant activities in garlic and white and red onions after treatment protocols. J Agric Food Chem 56(12):4418–4426. CrossRefGoogle Scholar
  17. Holtshausen L, Chaves AV, Beauchemin KA, McGinn SM, McAllister TA, Odongo NE, Cheeke PR, Benchaar C (2009) Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J Dairy Sci 92(6):2809–2821. CrossRefGoogle Scholar
  18. Kiassos E, Mylonaki S, Makris DP, Kefalas P (2009) Implementation of response surface methodology to optimize extraction of onion (Allium cepa) solid waste phenolics Innovative. Innov Food Sci Emerg Technol 10:246–252CrossRefGoogle Scholar
  19. Kittisakulnam S, Saetae D, Suntornsuk W (2017) Antioxidant and antibacterial activities of spices traditionally used in fermented meat products. J Food Process Preserv 41:1–8. CrossRefGoogle Scholar
  20. Li S, Wang P, Yuan W, Su Z, Bullard SH (2016) Endocidal regulation of secondary metabolites in the producing organisms. Sci Rep 6:1–17. CrossRefGoogle Scholar
  21. Lu M, Yuan B, Zeng M, Chen J (2011) Antioxidant capacity and major phenolic com- pounds of spices commonly consumed in China. Food Res Inter 44(2):530–536. CrossRefGoogle Scholar
  22. Makkar HPS, Sen S, Blummel M, Becker K (1998) Effects of fractions containing saponins from Yucca schidigera, Quillaja saponaria and Acacia auriculoformis on rumen fermentation. J Agric Food Chem 46:4324–4328. CrossRefGoogle Scholar
  23. Mantecón T, Ahumada A (2000) Diarrea mecánica de porcino en lactancia y postdestete. Mundo Ganadero, Eumedia. Madrid, España. Febrero 1(119):48–50Google Scholar
  24. Martínez R, Ortega ME, Herrera JG, Kawas JR, Zárate JJ, Robles RS (2015) Uso de aceites esenciales en animales de granja. Interciencia 40(11):744–750Google Scholar
  25. Masschelein-Kleiner L (2004) Les solvants. Dirección de Bibliotecas Archivos y Museos, Centro Nacional de Conservación y Restauración Propiedad Intelectual No. 138.776, ISBN: 956-244-166-0Google Scholar
  26. Mehta S, Soni N, Satpathy G, Gupta RK (2014) Evaluation of nutritional, phytochemical, antioxidant and antibacterial activity of dried plum (Prunus domestica). J Pharmacogn Phytochem Title 3(2):166–171Google Scholar
  27. Nightingale KK, Schukken HY, Nightingale CR, Fortes ED, Ho AJ, Her Z, Grohn YT, McDonough PL, Wiedmann M (2004) Ecology and transmission of Listeria monocytogenes infecting ruminants and in the farm environment. Appl Environ Microbiol 70(8):4458–4467CrossRefGoogle Scholar
  28. Oboh G, Odubanjo VO, Bello F, Ademosun AO, Oyeleye SI, Nwanna EE, Ademiluyi AO (2016) Aqueous extracts of avocado pear (Persea americana Mill.) leaves and seeds exhibit anti-cholinesterases and antioxidant activities in vitro. J Basic Clin Physiol Pharmacol 27(2):131–140. CrossRefGoogle Scholar
  29. Pereira V, Chapel JM, Rodríguez-Bermúdez R, Orjales I, Domínguez R, Vázquez P (2017) Los extractos vegetales son una alternativa natural a los antibióticos. Sitio Argentino de Producción Animal. Accessed 15 June 2018
  30. Qian H, Nihorimbere V (2004) Antioxidant power of phytochemicals from Psidium guajava leaf. J Zhejiang Univ Sci 5:676–683CrossRefGoogle Scholar
  31. Rasool M, Malik A, Arooj M, Alam MZ, Alam Q, Awan M, Asif M, Qazi MH, Zaheer A, Khan SU, Haque A, Pushparaj PN, Choudhry H, Jamal MS (2017) Evaluation of antimicrobial activity of ethanolic extracts of Azadirachta indica and Psidium guajava against clinically important bacteria at varying pH and temperature. Biomed Res 28:134–139. Google Scholar
  32. Robles-García MA, Aguilar AJ, Gutiérrez-Lomelí M, Rodríguez-Félix F, Morales-Del-Río JA, Guerrero-Medina PJ, Madriga-Pulidol JA, Del-Toro-Sánchez CL (2016) Identificación cualitativa de metabolitos secundarios y determinación de la citotoxicidad de extractos de tempisque (Sideroxylum capiri pittier). Biotecnia 17(3):3–8. Google Scholar
  33. Salem AZM, Olivares M, López S, González-Ronquillo M, Rojo R, Camacho LM, Cerrillo SMA, Mejia HP (2011) Effect of natural extracts of Salix babylonica and Leucaena leucocephala on nutrient digestibility and growth performance of lambs. Anim Feed Sci Technol 170:27–34. CrossRefGoogle Scholar
  34. Smith TC (2015) Livestock-associated Staphylococcus aureus: the United States experience. PLoS Pathog 11(2):1–8. CrossRefGoogle Scholar
  35. Soto-García M, Rosales-Castro M (2016) Effect of solvent and solvent-to-solid ratio on the phenolic extraction and the antioxidant capacity of extracts from Pinus durangensis and Quercus sideroxy la BARK. Maderas Cienc Tecnol 18(4):701–714. Google Scholar
  36. Spizzirri UG, Iemma F, Puoci F, Cirillo G, Curcio M, Parisi OL, Picci N (2009) Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromol 10:1923–1930. CrossRefGoogle Scholar
  37. Tajkarimi MM, Ibrahim SA, Cliver DO (2010) Antimicrobial herb and spice compounds in food. Food Control 21:1199–1218. CrossRefGoogle Scholar
  38. Yamassaki FT, Campestrini LH, Zawadzki-Baggio SF, Maurer JBB (2017) Avocado leaves: influence of drying process, thermal incubation, and storage conditions on preservation of polyphenolic compounds and antioxidant activity. Int J Food Prop 20(S2):S2280–S2293. Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Programa de Maestría y Doctorado en Ciencias Agropecuarias y Recursos NaturalesUniversidad Autónoma del Estado de MéxicoTolucaMexico
  2. 2.Facultad de Ciencias AgrícolasUniversidad Autónoma del Estado de MéxicoTolucaMexico
  3. 3.Facultad de Medicina y VeterinariaUniversidad Autónoma del Estado de MéxicoTolucaMexico
  4. 4.Unidad de Investigación y Desarrollo en AlimentosInstituto Tecnológico de VeracruzVeracruzMexico

Personalised recommendations