Structure and above ground biomass along an elevation small-scale gradient: case study in an Evergreen Andean Amazon forest, Ecuador

  • Bolier TorresEmail author
  • Liette Vasseur
  • Rolando López
  • Pablo Lozano
  • Yudel García
  • Yasiel Arteaga
  • Carlos Bravo
  • Cecilio Barba
  • Antón García


The purpose of this study was to examine how tree diversity, richness, and structural characteristics as well as above-ground biomass varies along a small-scale elevation gradient from 601 to 1000 m above sea level (m.a.s.l.) in an Evergreen Andean Amazon forest and their implications in terms of carbon storage. Trees with diameter at breast height greater than 10 cm were surveyed in 20 permanent 0.1 ha plots, five at each elevation site. We determined species richness, density, basal area, aerial biomass and calculated a biomass importance value (BIV). The 1378 trees surveyed were mainly contained in the families Moraceae (17 species) Fabaceae (16) and Meliaceae (10). Species richness significantly increased (P < 0.007) along the small-scale elevation gradient and was greatest in the range of 901–1000 m.a.s.l. Aerial biomass varied between 246.8 and 320.9 Mega grams per hectare (Mg ha−1) and did not differ along the gradient (P > 0.579). At the highest tree density, the highest BIV of Iriartea deltoidea was found at 601–900 m.a.s.l. The disproportionate contribution of a few species, some being the least abundant but with high AGB in our surveys (e.g., Sterculia sp., Nectandra sp., Ficus sp., and Inga sp.) to carbon stocks is important to consider in furture research on carbon sequestration. As the production of above-ground biomass was concentrated in a few species, some uncommon, decision making in reforestation programs and how species should be selected may have implications when measuring and promoting carbon storage.


Forest biomass Biomass important value Amazonian ecosystem 


  1. Aiba SI, Kitayama K (1999) Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecol 140:139–157CrossRefGoogle Scholar
  2. Baker TR, Phillips OL, Malhi Y et al (2004) Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob Change Biol 10:545–562CrossRefGoogle Scholar
  3. Bilsborrow RE, Barbieri AF, Pan W (2004) Changes in population and land use over time in the Ecuadorian Amazon. Acta Amaz 34:635–647CrossRefGoogle Scholar
  4. Brown IF, Martinelli LA, Thomas WW, Moreira MZ, Cid Ferreira CA, Victoria RA (1995) Uncertainty in the biomass of Amazonian forests: an example from Rondônia, Brazil. For Ecol Manag 75:175–189. CrossRefGoogle Scholar
  5. Bunker DE, DeClerk F, Bradford JC, Colwell RK, Perfecto Y, Phillips OL, Sankaran M, Naeem S (2005) Species loss and above-ground carbon storage in a tropical forest. Science 310:1029–1031CrossRefGoogle Scholar
  6. Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, O’onner MI, Gonzalez A (2011) The funtional role of producer diversity in ecosystems. Am J Bot 98:572–592CrossRefGoogle Scholar
  7. Chave J, Andalo C, Brown S et al (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99CrossRefGoogle Scholar
  8. Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366CrossRefGoogle Scholar
  9. Coomes DA, Allen RB (2007) Effects of size, competition and altitude on tree growth. J Ecol 95:1084–1097CrossRefGoogle Scholar
  10. Culmsee H, Leuschner C, Moser G, Pitopang R (2010) Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. J Biogeogr 37:960–974CrossRefGoogle Scholar
  11. Eisfelder C, Klein I, Bekkuliyeva A, Kuenzer C, Buchroithner MF, Dech S (2017) Above-ground biomass estimation based on NPP time-series—a novel approach for biomass estimation in semi-arid Kazakhstan. Ecol Indic 72:13–22CrossRefGoogle Scholar
  12. Fahey TJ, Knapp AK (2007) Principles and standards for measuring primary production. Oxford University Press, OxfordCrossRefGoogle Scholar
  13. Fauset S, Johnson MO, Gloor M et al (2015) Hyperdominance in Amazonian forest carbon cycling. Nat Commun 6:6857CrossRefGoogle Scholar
  14. Finer M, Jenkins CN, Pimm SL, Keane B, Ross C (2008) Oil and gas projects in the western Amazon: threats to wilderness, biodiversity, and indigenous peoples. PLoS ONE 3:e2932. CrossRefGoogle Scholar
  15. Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Mo Bot Gard 75:1–34CrossRefGoogle Scholar
  16. Gentry AH (1992a) Diversity and floristic composition of Andean cloud forests of Peru and adjacent countries: implications for their conservation. Memorias del Museo de Historia Natural U.N.M.S.M 21:11–29Google Scholar
  17. Gentry AH (1992b) Tropical forest biodiversity: distributional patterns and their conservational significance. Oikos 63:19–28CrossRefGoogle Scholar
  18. Houghton RA, Hall F, Goetz SJ (2009) Importance of biomass in the global carbon cycle. J Geophys Res Biogeosci 114:G2CrossRefGoogle Scholar
  19. Keeling HC, Phillips OL (2007) The global relationship between forest productivity and biomass. Glob Ecol Biogeogr 16:618–631CrossRefGoogle Scholar
  20. Killeen TJ (2007) Advances in Applied Biodiversity Science No. 7. Center for Applied Biodiversity Science, Conservation International, Washington, DCGoogle Scholar
  21. Kirby KR, Potvin C (2007) Variation in carbon storage among tree species: implications for the management of a small-scale carbon sink project. For Ecol Manag 246:208–221CrossRefGoogle Scholar
  22. Kitayama K, Aiba SI (2002) Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. J Ecol 90:37–51CrossRefGoogle Scholar
  23. Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574CrossRefGoogle Scholar
  24. Lamprecht H (1990) Silvicultura en los trópicos: los ecosistemas forestales en los bosques tropicales y sus especies arbóreas; posibilidades y métodos para un aprovechamiento sostenido, TZ-Verlag-GesGoogle Scholar
  25. Leuschner C, Moser G, Bertsch C, Röderstein M, Hertel D (2007) Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl Ecol 8:219–230CrossRefGoogle Scholar
  26. Lewis SL, Sonké B, Sunderland T et al (2013) Above-ground biomass and structure of 260 African tropical forests. Philos Trans R Soc B 368:20120295CrossRefGoogle Scholar
  27. Magurran AE (2013) Measuring biological diversity. Wiley, New YorkGoogle Scholar
  28. Malhi Y, Grace J (2000) Tropical forests and atmospheric carbon dioxide. Trends Ecol Evol 15:332–337CrossRefGoogle Scholar
  29. Mejía E, Pacheco P, Muzo A, Torres B (2015) Smallholders and timber extraction in the Ecuadorian Amazon: amidst market opportunities and regulatory constraints. Int For Rev 16:1–13. Google Scholar
  30. Mena CF, Lasso F, Martínez P, Sanpedro C (2017) Modeling road building, deforestation and carbon emissions due deforestation in the Ecuadorian Amazon: the potential impact of oil frontier growth. J Land Use Sci. Google Scholar
  31. Ministerio de Ambiente del Ecuador (MAE) (2012) Sistema de clasificación de los ecosistemas del Ecuador continental. Subsecretaría de Patrimonio Natural, QuitoGoogle Scholar
  32. Ministerio del Ambiente del Ecuador (MAE) (2013) Estimación de la Tasa de Deforestación del Ecuador continental. Ministerio del Ambiente del Ecuador, QuitoGoogle Scholar
  33. Mittermeier RA, Myers N, Thomsen JB, da Fonseca GAB, Olivieri S (1998) Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conserv Biol 12:516–520CrossRefGoogle Scholar
  34. Moser G, Leuschner C, Hertel D, Graefe S, Soethe N, Iost S (2011) Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Glob Change Biol 17:2211–2226CrossRefGoogle Scholar
  35. Myers N (1988) Threatened biotas:” hot spots” in tropical forests. Environmentalist 8:187–208. CrossRefGoogle Scholar
  36. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853. CrossRefGoogle Scholar
  37. Nascimento HEM, Laurance WF (2002) Total aboveground biomass in central Amazonian rainforests: a landscape-scale study. For Ecol Manag 168:311–321CrossRefGoogle Scholar
  38. Nebel G, Kvist LP, Vanclay JK, Christensen H, Freitas L, Ruíz J (2001) Structure and floristic composition of flood plain forests in the Peruvian Amazon: I. Overstorey. For Ecol Manage 150:27–57CrossRefGoogle Scholar
  39. Pan W, Carr D, Barbieri A, Bilsborrow R, Suchindran C (2007) Forest clearing in the Ecuadorian Amazon: a study of patterns over space and time. Popul Res Policy Rev 26:635–659. CrossRefGoogle Scholar
  40. Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993CrossRefGoogle Scholar
  41. Phillips OL, Malhi Y, Higuchi N et al (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442CrossRefGoogle Scholar
  42. Poorter L, van der Sande MT, Thompson J et al (2015) Diversity enhances carbon storage in tropical forests. Glob Ecol Biogeogr 24:1314–1328CrossRefGoogle Scholar
  43. Ruiz-Jaen MC, Potvin C (2010) Tree diversity explains variation in ecosystem function in a neotropical forest in Panama. Biotropica 42:638–646CrossRefGoogle Scholar
  44. Slik JW, Raes N, Aiba SI et al (2009) Environmental correlates for tropical tree diversity and distribution patterns in Borneo. Divers Distrib 15:523–532CrossRefGoogle Scholar
  45. Slik J, Aiba SI, Brearley FQ, Cannon CH, Forshed O, Kitayama K, Nagamasu H, Nilus R, Payne J, Paoli G (2010) Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo’s tropical forests. Glob Ecol Biogeogr 19:50–60CrossRefGoogle Scholar
  46. Tanner EVJ, Rodriguez-Sanchez F, Healey JR, Holdawy RJ, Bellingham PJ (2014) Long-term hurricane damage effects on tropical forest tree growth and mortality. Ecology. Google Scholar
  47. ter Steege H, Sabatier D, Castellanos H et al (2000) An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana Shield. J Trop Ecol 16:801–828CrossRefGoogle Scholar
  48. ter Steege H, Pitman NCA, Sabtatier D et al (2013) Hyperdominance in the Amazonian tree flora. Science 342:1243092CrossRefGoogle Scholar
  49. Torres B, Bilsborrow R, Barbieri A, Torres A (2014) Cambios en las estrategias de ingresos económicos a nivel de hogares rurales en el norte de la Amazonía Ecuatoriana. Revista Amazónica: Ciencia y Tecnología 3:221–257Google Scholar
  50. Torres B, Günter S, Acevedo-cabra R, Knoke T (2018a) Livelihood strategies, ethnicity and rural income: the case of migrant settlers and indigenous populations in the Ecuadorian Amazon. For Policy Econ 86:22–34CrossRefGoogle Scholar
  51. Torres B, Vasco C, Günter S, Knoke T (2018b) Determinants of agricultural diversification in a hotspots area: evidence from colonist and indigenous communities in the Sumaco Biosphere Reserve, Ecuadorian Amazon. Sustainability 10:1432CrossRefGoogle Scholar
  52. Unger M, Homeier J, Leuschner C (2012) Effects of soil chemistry on tropical forest biomass and productivity at different elevations in the equatorial Andes. Oecologia 170:263–274CrossRefGoogle Scholar
  53. Valencia R, Balslev H, Miño GPY (1994) High tree alpha-diversity in Amazonian Ecuador. Biodivers Conserv 3:21–28CrossRefGoogle Scholar
  54. Vasco C, Torres B, Pacheco P, Griess V (2017) The socioeconomic determinants of legal and illegal smallholder logging: evidence from the Ecuadorian Amazon. For Policy Econ 78:133–140. CrossRefGoogle Scholar
  55. Verón SR, Paruelo JM, Oesterheld M (2011) Grazing-induced losses of biodiversity affect the transpiration of an arid ecosystem. Oecologia 165:501–510CrossRefGoogle Scholar
  56. Wang X, Piao S, Ciais P et al (2014) A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506(7487):212–215. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Universidad Estatal AmazónicaPastazaEcuador
  2. 2.Department of Biological SciencesBrock UniversitySt. Catharine’sCanada
  3. 3.Universidad Técnica Estatal de QuevedoQuevedoEcuador
  4. 4.Departamento de Producción AnimalUniversidad de CórdobaCórdobaSpain

Personalised recommendations