Agroforestry Systems

, Volume 93, Issue 2, pp 449–460 | Cite as

Synchrony in the phenologies of fine roots and leaves of Vitellaria paradoxa in different land uses of Burkina Faso

  • Paulin Bazié
  • Catherine Ky-Dembele
  • Christophe Jourdan
  • Olivier Roupsard
  • Gérard Zombré
  • Jules BayalaEmail author


This study focused on leaf and root density dynamics of the most dominant tree species (Vitellaria paradoxa) of West African savannas in two land use types (farmed land and forest). Ten trees located at least 100 m from each other were selected, with five trees each located in the field and in the forest. Five of the trees were of small-diameter [two in the fields (diameter at breast height or DBH 20.1–20.7 cm) and three in the forest (DBH 7.0–8.0–10.8 cm)] and five others were of large-diameter [three in the fields (DBH 38.2–81.8–81.9 cm) and two in the forest (DBH 20.1–20.7 cm)]. One near-vertical rhizotron was installed under each tree to evaluate root density while canopy openness, diffuse and directly transmitted light were monitored by taking hemispheric photograph monthly. After a two-year period of monitoring, the results revealed a strong seasonality in root density with peak root density observed during the rainy season in August and the lowest production during the dry season in April. Significant lowest canopy openness was observed from August to September while the highest occurred from March to May, which was found to be synchronous with fine root dynamics. The light interception followed the same trends as the leaf production. Furthermore, both mature and young trees showed significant higher root density in the fields compared to the forest while the mean values of all the parameters of canopy openness and light transmittance were higher in the forest than the fields.


Canopy openness Ecosystem Hemispherical photography Savanna Shea 



This study was funded by the European Community’s sixth framework program through the “Innovative Tools and Techniques for Sustainable Use of the Shea Tree in Sudano-Sahelian zone (Contract Number INCO-CT-032037)” as well as by FTA CRP of the CG consortium. We thank the farmers of Sobaka for their participation in the field study. We also thank Kaboré Abel for field assistance. The anonymous reviewers are highly appreciated and thanked for their constructive comments.


  1. Ahlström A, Raupach MR, Schurgers G, Smith B, Arneth A, Jung M, Reichstein M, Canadell JG, Friedlingstein P, Jain AK, Kato E, Poulter B, Sitch S, Stocker BD, Viovy N, Wang YP, Wiltshire A, Zaehle S, Zeng N (2015) The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348:895–899CrossRefGoogle Scholar
  2. Bargués-Tobella A, Hasselquist NJ, Bazié HR, Nyberg G, Laudon H, Bayala J, Ilstedt U (2017) Strategies trees use to overcome seasonal water limitation in an agroforestry system in semiarid West Africa. Ecohydrology 10:e1808CrossRefGoogle Scholar
  3. Bastide B, Ouédraogo SJ (2008) Rejets de Detarium microcarpum et feux précoces. Bois For Trop 296:27–38Google Scholar
  4. Bayala J (2002) Tree crown pruning as a management tool to enhance the productivity of parklands in West Africa. PhD Thesis, University of Wales, Bangor, UKGoogle Scholar
  5. Bayala J, Teklehaimanot Z, Ouedraogo SJ (2004) Fine root distribution of pruned trees and associated crops in a parkland system in Burkina Faso. Agrofor Syst 60:13–26CrossRefGoogle Scholar
  6. Bayala J, Balesdent J, Marol C, Zapata F, Teklehaimanot Z, Ouedraogo SJ (2006) Relative contribution of trees and crops to soil carbon content in a parkland system in Burkina Faso using variations in natural 13C abundance. Nutr Cycl Agroecosyst 76:193–201CrossRefGoogle Scholar
  7. Bayala J, Heng LK, van Noordwijk M, Ouedraogo SJ (2008) Hydraulic Lift study in two native tree species of agroforestry parklands of West African dry savanna. Acta Oecol 34:370–378CrossRefGoogle Scholar
  8. Bayala J, Sanou J, Teklehaimanot Z, Kalinganire A, Ouédraogo SJ (2014) Parklands for buffering climate risk and sustaining agricultural production in the Sahel of West Africa. Curr Opin Environ Sustain 6:28–34CrossRefGoogle Scholar
  9. Bazié HR, Sanou J, Bayala J, Bargués-Tobella A, Zombré G, Ilstedt U (2017) Temporal variations in transpiration of Vitellaria paradoxa in West African agroforestry parklands. DOI, Agrofor Syst. doi: 10.1007/s10457-017-0115-4 Google Scholar
  10. Boffa JM (2000) Les parcs agroforestiers en Afrique de l’Ouest: clés de la conservation et d’une gestion durable. Unasylva 51:11–17Google Scholar
  11. Bond WJ, Midgley JJ (2001) Ecology of sprouting in woody plants: the persistence niche. Trends Ecol Evol 16:45–51CrossRefGoogle Scholar
  12. Bouda ZHN, Bayala J, Markussen B, Jensen JS, Raebild A (2012) Provenance variation in survival, growth and dry matter partitioning of Parkia biglobosa (Jacq.) R.Br. ex G.Don seedlings in response to water stress. Agrofor Syst 87:59–71CrossRefGoogle Scholar
  13. Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C (2015) How tree roots respond to drought. Front Plant Sci 6:547. doi: 10.3389/fpls.2015.00547 CrossRefGoogle Scholar
  14. Caldararu S, Purves DW, Palmer PI (2014) Phenology as a strategy for carbon optimality: a global model. Biogeosciences 11:763–778CrossRefGoogle Scholar
  15. Chairungsee N, Gay F, Thaler P, Kasemsap P, Thanisawanyangkura S, Chantuma A, Jourdan C (2013) Impact of tapping and soil water status on fine root dynamics in a rubber tree plantation in Thailand. Front Plant Sci 4:538. doi: 10.3389/fpls.2013.00538 CrossRefGoogle Scholar
  16. CPCS (Commission de Pédologie et de Cartographie des Sols). (1967) Classification des sols. Laboratoire de Géologie et de Pédologie, Ecole Nationale Supérieure d’Agronomie, GrognonGoogle Scholar
  17. Delpierre N, Vitasse Y, Chuine I, Guillemot J, Bazot S, Rutishauser T, Rathgeber CBK (2016) Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Ann For Sci 73:5–25CrossRefGoogle Scholar
  18. Elfeel AA, Warrag EI, Musnad HA (2007) Response of Balanites aegyptiaca (L.) Del. seedlings from varied geographical source to imposed drought stress. Discov Innov 184:319–325Google Scholar
  19. Fontés J, Guinko S (1995) Carte de la végétation et de l’occupation du sol du Burkina Faso. Institut de la Carte International de la Végétation. Université Toulouse France; Institut du Développement Rural, Université Ouagadougou, Burkina FasoGoogle Scholar
  20. Food and Agriculture Organization of the United Nations (FAO) (1998) World soil resources reports. International Society of Soil Science ISSS-AISS-IBG, RomeGoogle Scholar
  21. Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, user’s manual and program documentation. Millbrook, New YorkGoogle Scholar
  22. Guira M (1997) Etude de la phénologie et de la variabilité de quelques caractères chez le karité, Butyrospermum paradoxum subsp. Parkii (G. Don) Hepper (Sapotaceae) dans les champs et les jeunes jachères dans la moitié ouest du Burkina Faso. Doctorat de 3ème cycle, Biologie et Ecologie Végétales. Université de OuagadougouGoogle Scholar
  23. Hall JB, Aebischer DP, Tomlinson HF, Osei-Amaning E, Hindle JR (1996) Vitellaria paradoxa, a monograph. School of Agricultural and Forest Sciences, University of Bangor, UKGoogle Scholar
  24. Haverd V, Smith B, Raupach M, Briggs P, Nieradzik L, Beringer J, Hutley L, Trudinger CM, Cleverly J (2015) Coupling carbon allocation with leaf and root phenology predicts tree-grass partitioning along a savanna rainfall gradient. Biogeosci Discuss 12:16313–16357CrossRefGoogle Scholar
  25. Hopkins HC, White F (1984) The ecology and chorology of Parkia in Africa. Bull Jard Bot Nat Belg 54:235–266CrossRefGoogle Scholar
  26. Jourdan C, Rey H (1997) Architecture and development of the oilpalm (Elaeis guineensis Jacq.) root system. Plant Soil 189:33–48CrossRefGoogle Scholar
  27. Jourdan C, Silva EV, Gonçalves JLM, Ranger J, Moreira RM, Laclau JP (2008) Fine root production and turnover in Brazilian Eucalyptus plantations under contrasting nitrogen fertilization regimes. For Ecol Manag 256:396–404CrossRefGoogle Scholar
  28. Kabeya D, Sakai A, Matsui K, Sakai S (2003) Resprouting of Quercus crispula seedlings depends on the vegetation cover of their microhabitants. J Plant Res 116(3):207–216CrossRefGoogle Scholar
  29. Kaboré SA, Bastide B, Traoré S, Boussim JI (2013) Dynamique du karité, Vitellaria paradoxa, dans les systèmes agraires du Burkina Faso. Bois For Trop 313:47–59CrossRefGoogle Scholar
  30. Kelly BA, Fleury SG, Bouvet MJ (2007) Impact of agroforestry practices on the flowering phenology of Vitellaria paradoxa in parklands in southern Mali. Agrofor Syst 71:67–75CrossRefGoogle Scholar
  31. Ky-Dembele C, Tigabu M, Bayala J, Ouédraogoa SJ, Odén PC (2007) The relative importance of different regeneration mechanisms in a selectively cut savanna-woodland in Burkina Faso, West Africa. Fort Ecol Manage 243(1):28–38CrossRefGoogle Scholar
  32. Ky-Dembele C, Bayala J, Savadogo P, Tigabu M, Oden PC, Boussim IJ (2010) Comparison of growth responses of Khaya senegalensis seedlings and stecklings to four irrigation regimes. Silva Fenn 44:787–798Google Scholar
  33. Lamien N (2006) Fructification du karité (Vitellaria paradoxa Gaertn.F, Sapotaceae): Facteurs de déperdition, Amélioration et Prévision des rendements à Bondoukuy, Ouest du Burkina Faso. Thèse de Doctorat, Université de OuagadougouGoogle Scholar
  34. Lehmann CER, Prior LD, Bowman DMJS (2009) Decadal dynamics of tree cover in an Australian tropical savanna. Austral Ecol 34:601–612CrossRefGoogle Scholar
  35. McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739CrossRefGoogle Scholar
  36. Nilson T (1971) A theoretical analysis of the frequency of gaps in plant stands. Agric Meteorol 8:25–38CrossRefGoogle Scholar
  37. Nord EA, Lynch JP (2009) Plant phenology: a critical controller of soil resource acquisition. J Exp Biol 60:1927–1937Google Scholar
  38. Okullo JBL, Hall JB, Obua J (2004) Leafing, flowering and fruiting of Vitellaria paradoxa subsp. nilotica in savanna parklands in Uganda. Agrofor Syst 60:77–91CrossRefGoogle Scholar
  39. Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50CrossRefGoogle Scholar
  40. Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, Broquet G, Canadell JG, Chevallier F, Liu YY, Running SW, Sitch S, van der Werf GR (2014) Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509:600–603CrossRefGoogle Scholar
  41. Roupsard O, Joly HI, Dreyer E (1998) Variability of initial growth, water-use efficiency and carbon isotope discrimination in seedlings of Faidherbia albida (Del.) A. Chev., a multipurpose tree of semi-arid Africa. Provenance and drought effects. Ann For Sci 55:329–348CrossRefGoogle Scholar
  42. Sanogo K, Gebrekirstos A, Bayala J, Villamor GB, Kalinganire A, Dodiomon S (2016) Potential of dendrochronology in assessing carbon sequestration rates of Vitellaria paradoxa in southern Mali, West Africa. Dendrochronologia 40:26–35CrossRefGoogle Scholar
  43. Steinaker DF, Wilson SD (2008) Phenology of fine roots and leaves in forest and grassland. J Ecol 96:1222–1229CrossRefGoogle Scholar
  44. Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates Inc, SunderlandGoogle Scholar
  45. Tracy SR, Mooney SJ, Sturrock CJ, Mairhofer S, Al-Traboulsi M, Bennett MJ, Pridmore TP, Lynch JP, Wells DM (2015) Laboratory and field techniques for measuring root distribution and architecture. In: Ong CK, Black CR, Wilson J (eds) Tree-crop interactions: agroforestry in a changing climate. 2nd edn. C.A.B International, pp 258–277Google Scholar
  46. Yuan ZY, Chen HYH (2012) A global analysis of fine root density as affected by soil nitrogen and phosphorus. Proc R Soc B 279:3796–3802CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Institut de l’Environnement et de Recherches Agricoles / Département Environnement et Forêts (INERA/DEF)Ouagadougou 03Burkina Faso
  2. 2.World Agroforestry CentreWest and Central Africa Regional OfficeBamakoMali
  3. 3.CIRAD, UMR Eco&Sols (Ecologie Fonctionnelle & Biogéochimie des Sols et des Agro-écosystèmes)MontpellierFrance
  4. 4.CATIE, Centro Agronómico Tropical de Investigación y EnseñanzaTurrialbaCosta Rica
  5. 5.Université de Ouagadougou, Unité de Formation et Recherche en Sciences de la Vie et de la TerreOuagadougou 03Burkina Faso

Personalised recommendations