Agroforestry Systems

, Volume 92, Issue 4, pp 877–891 | Cite as

Agroforestry systems of high nature and cultural value in Europe: provision of commercial goods and other ecosystem services

  • G. MorenoEmail author
  • S. Aviron
  • S. Berg
  • J. Crous-Duran
  • A. Franca
  • S. García de Jalón
  • T. Hartel
  • J. Mirck
  • A. Pantera
  • J. H. N. Palma
  • J. A. Paulo
  • G. A. Re
  • F. Sanna
  • C. Thenail
  • A. Varga
  • V. Viaud
  • P. J. Burgess


Land use systems that integrate woody vegetation with livestock and/or crops and are recognised for their biodiversity and cultural importance can be termed high nature and cultural value (HNCV) agroforestry. In this review, based on the literature and stakeholder knowledge, we describe the structure, components and management practices of ten contrasting HNCV agroforestry systems distributed across five European bioclimatic regions. We also compile and categorize the ecosystem services provided by these agroforestry systems, following the Common International Classification of Ecosystem Services. HNCV agroforestry in Europe generally enhances biodiversity and regulating ecosystem services relative to conventional agriculture and forestry. These systems can reduce fire risk, compared to conventional forestry, and can increase carbon sequestration, moderate the microclimate, and reduce soil erosion and nutrient leaching compared to conventional agriculture. However, some of the evidence is location specific and a better geographical coverage is needed to generalize patterns at broader scales. Although some traditional practices and products have been abandoned, many of the studied systems continue to provide multiple woody and non-woody plant products and high-quality food from livestock and game. Some of the cultural value of these systems can also be captured through tourism and local events. However there remains a continual challenge for farmers, landowners and society to fully translate the positive social and environmental impacts of HNCV agroforestry into market prices for the products and services.


Wood pastures Bocage Dehesa/montado Parklands Biodiversity Provisioning services Regulating services Cultural services 



This paper was developed as part of the AGFORWARD project (Grant Agreement No. 613520) which is co-funded by the European Commission, Directorate General for Research & Innovation, within the 7th Framework Programme of RTD, Theme 2—Biotechnologies, Agriculture & Food.


  1. Andersen E, Baldock D, Bennet H, Beaufoy G, Bignal E, Brower F, Elbersen B, Eiden G, Godeschalk F, Jones G, McCracken DI, Nieuwenhuizen W, van Eupen M, Hennekes S, Zervas G (2003) Developing a high nature value indicator. Report for the European Environment Agency, CopenhagenGoogle Scholar
  2. Baudry J, Jouin A (eds) (2003) De la haie aux bocages—organisation, dynamique et gestion, INRA edn. INRA, ParisGoogle Scholar
  3. Benhamou C, Salmon-Monviola J, Durand P, Grimaldi C, Merot P (2013) Modeling the interaction between fields and a surrounding hedgerow network and its impact on water and nitrogen flows of a small watershed. Agric Water Manag 121:62–72CrossRefGoogle Scholar
  4. Bergmeier E, Petermann J, Schroder E (2010) Geobotanical survey of woodpasture habitats in Europe: diversity, threats and conservation. Biodivers Conserv 19:2995–3014CrossRefGoogle Scholar
  5. Blaser WJ, Sitters J, Hart SP, Edwards PJ, Olde Venterink H (2013) Facilitative or competitive effects of woody plants on understorey vegetation depend on N-fixation, canopy shape and rainfall. J Ecol 101(6):1598–1603CrossRefGoogle Scholar
  6. Borges JG, Oliveira AC, Costa MA (1997) A quantitative approach to cork oak forest management. For Ecol Manage 97:223–229CrossRefGoogle Scholar
  7. Campos P, Huntsinger L, Oviedo JL, Starrs PF, Diaz M, Standiford RB, Montero G (eds) (2013) Mediterranean oak woodland working landscapes. Dehesas of Spain and Ranchlands of California. Series: Landscape Series, vol 16. Springer, New YorkGoogle Scholar
  8. Carroll ZL, Bird SB, Emmett BA, Reynolds B, Sinclair FL (2004) Can tree shelterbelts on agricultural land reduce flood risk? Soil Use Manag 20:357–359CrossRefGoogle Scholar
  9. Diaz M, Campos P, Pulido FJ (1997) The Spanish dehesas: a diversity in land-use and wildlife. Farming Birds Eur 178:209Google Scholar
  10. Eichhorn MP, Paris P, Herzog F, Incoll LD, Liagre F, Mantzanas K, Mayus M, Moreno G, Papanastasis VP, Pilbeam DJ, Pisanelli A, Dupraz C (2006) Silvoarable systems in Europe—past, present and future prospects. Agrofor Syst 67:29–50CrossRefGoogle Scholar
  11. Fagerholm N, Oteros-Rozas E, Raymond CM, Torralba M, Moreno G, Plieninger T (2016) Assessing linkages between ecosystem services, land-use and well-being in an agroforestry landscape using public participation GIS. Appl Geogr 74:30–46CrossRefGoogle Scholar
  12. Fotiadis G, Pantera A, Papadopoulos A (2012) Medicinal plants of Quercus ithaburensis woodland pastures in west Greece. 9th European Dry Grassland Meeting (EDGM) Prespa, Greece, 19–23 May 2012Google Scholar
  13. Franca A, Sanna F, Nieddu S, Re GA, Pintus GV, Ventura A, Duce P, Salis M, Arca B (2012) Effects of grazing on the traits of a potential fire in a Sardinian wooded pasture. Options méditerranéennes. Série A: séminaires méditerranéens, CIHEAM, Centre international de hautes études agronomiques méditerranéennes, 102, 307—311, ISSN: 1016-121XGoogle Scholar
  14. Francaviglia R, Benedetti A, Doro L, Madrau S, Ledda L (2014) Influence of land use on soil quality and stratification ratios under agro-silvo-pastoral Mediterranean management systems. Agr Ecosyst Environ 183:86–92CrossRefGoogle Scholar
  15. Garbarino M and Bergmeier E (2014) Plant and vegetation diversity in European wood-pastures. European wood-pastures in transition: a social-ecological approach. Earthscan from Routledge, Abingdon, pp 113–131Google Scholar
  16. Gómez-Baggethun E, De Groot R, Lomas PL, Montes C (2010) The history of ecosystem services in economic theory and practice: from early notions to markets and payment schemes. Ecol Econ 69(6):1209–1218CrossRefGoogle Scholar
  17. UK Biodiversity Group (1988) Tranche 2 action plans terrestrial and freshwater habitats. Accessed 21 August 2017
  18. Haines-Young R and Potschin M (2013) Common international classification of ecosystem services (CICES), Version 4.3. Report to the European Environment Agency.
  19. Hartel T, Plieninger T (2014) European wood-pastures in transition: a social-ecological approach. Routledge, LondonCrossRefGoogle Scholar
  20. Hartel T, Dorresteijn I, Klein C, Máthé O, Moga CI, Öllerer K, Roellig M, von Wehrden H, Fischer J (2013) Wood-pastures in a traditional rural region of Eastern Europe: characteristics, management and status. Biol Cons 166:267–275CrossRefGoogle Scholar
  21. Hartel T, Hanspach J, Abson D, Mathe O, Moga C, Fischer J (2014) Bird communities in traditional wood-pastures with changing management in Eastern Europe. Basic Appl Ecol 15:385–395CrossRefGoogle Scholar
  22. Howlett DS, Moreno G, Mosquera Losada MR, Nair PKR, Nair VD (2011) Soil carbon storage as influenced by tree cover in the Dehesa cork oak silvopasture of central-western Spain. J Environ Monit 13:1897–1904CrossRefPubMedGoogle Scholar
  23. La Notte A, D’Amato D, Mäkinen H, Paracchini ML, Liquete C, Egoh B, Geneletti D, Crossman ND (2017) Ecosystem services classification: a systems ecology perspective of the cascade framework. Ecol Ind 74:392–402CrossRefGoogle Scholar
  24. Lacoste M, Viaud V, Michot D, Walter C (2015) Landscape-scale modelling of erosion processes and soil carbon dynamics under land-use and climate change in agroecosystems. Eur J Soil Sci 66:780–791CrossRefGoogle Scholar
  25. Le Du L, Le Coeur D, Thenail C, Burel F, Baudry J (2008) New hedgerows in replanting programmes: assessment of their ecological quality and their maintenance on farms. In: Berlan-Darqué M, Terrasson D, Luginbühl Y (eds) Landscape: from knowledge to action. Editions Quae, Versailles, pp 177–191Google Scholar
  26. Le Feon V (2010) Insectes pollinisateurs dans les paysages agricoles: approche pluri-échelle du rôle des habitats semi-naturels, des pratiques agricoles et des cultures entomophiles. Thèse Université de Rennes 1, Rennes, FranceGoogle Scholar
  27. López-Díaz ML, Rolo V, Benítez R, Moreno G (2015) Shrub encroachment of Iberian dehesas: implications on total forage productivity. Agrofor Syst 89:587–598CrossRefGoogle Scholar
  28. LUGV (2011) Lebensräume im Wandel – Ergebnisse der ökosystemaren Umweltbeobachtung (ÖUB) im Biosphärenreservat Spreewald. Landesamt für Umwelt, Gesundheit und Verbraucherschutz, PotsdamGoogle Scholar
  29. Macaulay LT, Starrs PF, Carranza J (2013) Hunting in managed oak woodlands: contrasts among similarities. In: Mediterranean oak woodland working landscapes. Springer, Dordrecht, pp 311–350Google Scholar
  30. Marañon T (1986) Plant species richness and canopy effect in the savanna-like ‘dehesa’ of SW Spain. Ecol Mediterr 12(1–2):131–141Google Scholar
  31. Matzdorf B, Reutter M, Hübner C (2010) Gutachten-Vorstudie Bewertung der Ökosystemdienstleistungen von HNV-Grünland (High Nature Value Grassland). Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V. Müncheberg, p 71Google Scholar
  32. Mayer AC, Stöckli V, Huovinen C, Konold W, Estermann BL, Kreuzer M (2003) Herbage selection by cattle on sub-alpine wood pastures. For Ecol Manage 181(1):39–50CrossRefGoogle Scholar
  33. MEA (2005) Millennium ecosystem assessment. Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DCGoogle Scholar
  34. MLUL (2012) Ministerium für Ländliche Entwicklung, Umwelt und Landwirtschaft des Landes Brandenburg. Bericht zur Überprüfung des UNESCO BR Spreewald. Accessed 26 April 2016
  35. Moga CI, Samoila C, Öllerer K, Bancila R, Reti KO, Craioveanu C, Sz Poszet, Rakosy L, Hartel T (2016) Environmental determinants of the old oaks in wood-pastures from a changing social-ecological system. Ambio 45:480–489CrossRefPubMedPubMedCentralGoogle Scholar
  36. Molnár Zs, Kis J, Vadász Cs, Papp L, Sándor I, Béres S, Sinka G, Varga A (2016) Common and conflicting objectives and practices of herders and nature conservation managers: the need for the ‘conservation herder’. Ecosyst Health Sustain 2(4):01215CrossRefGoogle Scholar
  37. Moreno G, Cubera E (2008) Impact of stand density on water status and leaf gas exchange in Quercus ilex. For Ecol Manage 254:74–84CrossRefGoogle Scholar
  38. Moreno G, Pulido F (2009) The functioning, management and persistence of Dehesas. In: Rigueiro-Rodriguez A, McAdam J, Mosquera-Losada MR (eds) Agroforestry in Europe, current status and future prospects, advances in agroforestry. Springer, Heidelberg, pp 127–160Google Scholar
  39. Moreno G, Obrador JJ, García A (2007) Impact of evergreen oaks on the fertility and oat production in intercropped dehesas. Agr Ecosyst Environ 119:270–280CrossRefGoogle Scholar
  40. Moreno G, Bartolome JW, Gea-Izquierdo G, Cañellas I (2013) Overstory–understorey relationships. In: Mediterranean oak woodland working landscapes. Springer, Dordrecht, pp 145–179Google Scholar
  41. Moreno G, Berg S, Burgess PJ, Camilli F, Crous-Duran J, Franca A, Hao H, Hartel T, Lind T, Mirck J, Palma J, Pantera A, Paula JA, Pisanelli A, Rolo V, Seddaiu G, Thenail C, Tsonkova P, Upson M, Valinger E, Varga A, Viaud V, Vityi A (2016a) Challenges and potential innovations to improve the resilience European wood-pastures. World Congress Silvo-Pastoral Systems. Silvopastoral systems in a changing world: functions, management and people, Septmeber 2016, Evora, PortugalGoogle Scholar
  42. Moreno G, Gonzalez-Bornay G, Pulido F, Lopez-Diaz ML, Bertomeu M, Juárez E, Diaz M (2016b) Exploring the causes of high biodiversity of Iberian dehesas: the importance of wood pastures and marginal habitats. Agrofor Syst 90:87–105CrossRefGoogle Scholar
  43. Mosquera-Losada MR, Moreno G, Pardini A, McAdam JH, Papanastasis V, Burgess PJ, Lamersdorf M, Castro FL, Rigueiro-Rodríguez A (2012) Past, present and future of agroforestry systems in Europe. In: Agroforestry-the future of global land use. Springer, Dordrecht, pp 285–312Google Scholar
  44. Mosquera-Losada MR, Santiago Freijanes JJ, Pisanelli A, Rois M, Smith J, den Herder M, Moreno G, Malignier N, Mirazo JR, Lamersdorf N, Ferreiro Domínguez N, Balaguer F, Pantera A, Rigueiro-Rodríguez A, Gonzalez-Hernández P, Fernández-Lorenzo JL, Romero-Franco R, Chalmin A, Garcia de Jalon S, Garnett K, Graves A, Burgess PJ (2016) Extent and success of current policy measures to promote agroforestry across Europe. Deliverable 8.23 for EU FP7 Research Project: AGFORWARD 613520 (8 December 2016)Google Scholar
  45. Oellerer K (2014) The ground vegetation management of wood-pastures in Romania–insights in the past for conservation management in the future. Appl Ecol Environ Res 12(2):549–562CrossRefGoogle Scholar
  46. Oppermann R, Beaufoy G, Jones G (eds) (2012) High nature value farming in Europe. 35 European countries—experiences and perspectives. Verlag Regionalkultur, Ubstadt-Weiher, GermanyGoogle Scholar
  47. Osterburg B, Rühling I, Runge T, Schmidt TG, Seidel K, Antony F, Gödecke B, Witt-Altfelder P (2007) Kosteneffiziente Maßnahmenkombinationen nach Wasserrahmenrichtlinie zur Nitratreduktion in der Landwirtschaft. In: Osterburg B, Runge T (Hrsg) Maßnahmen zur Reduzierung von Stickstoffeinträgen in die Gewässer – eine wasserschutzorientierte Landwirtschaft zur Umsetzung der Wasserrahmenrichtlinie. Landbauforschung Völkenrode. Sonderheft 307, p 312Google Scholar
  48. Ouin A, Burel F (2002) Influence of herbaceous elements on butterfly diversity in hedgerow agricultural landscapes. Agr Ecosyst Environ 93(2002):45–53CrossRefGoogle Scholar
  49. Pantera Α, Papanastasis VP (2003) Inventory of Q. ithaburensis ssp. macrolepis (Quercus ithaburensis Decaisne ssp. macrolepis (Kotschy) Hedge & Yalt. in Greece. Geotech Sci Issues 1(2003):34–43 (in Greek) Google Scholar
  50. Pantera A, Papadopoulos AM, Fotiadis G, Papanastasis VP (2008) Distribution and ptytogeographical analysis of Quercus ithaburensis ssp. macrolepis in Greece. Ecol Mediterr 34:73–81Google Scholar
  51. Papanastasis VP, Yiakoulaki MD, Decandia M, Dini-Papanastasi O (2008) Integrating woody species into livestock feeding in the Mediterranean areas of Europe. Anim Feed Sci Technol 140(1):1–17CrossRefGoogle Scholar
  52. Paracchini ML, Petersen JE, Hoogeveen Y, Bamps C, Burfield I, van Swaay C (2008) High nature value farmland in Europe—an estimate of the distribution patterns on the basis of land cover and biodiversity data, Report EUR 23480 ENGoogle Scholar
  53. PASTOMED (2007) Le Pastoralisme Méditerranéen, situation actuelle et perspectives, Final Report of the projet INTERREG IIIC Zone Sud PASTOMED « Traditions et modernité du pastoralisme méditerranéen : connaissance et reconnaissance de rôles du pastoralisme dans le développement durable des territoires ruraux méditerranéens » , Maison Régionale de l’Elevage, MANOSQUE (France),
  54. Petit S, Burel F (1998) Connectivity in fragmented populations: Abax parallelepipedus in a hedgerow network landscape. Life Sci 321:55–61Google Scholar
  55. Plieninger T, Bieling C (2013) Resilience-based perspectives to guiding high nature value farmland through socio-economic change. Ecol. Soc. 18(4):20CrossRefGoogle Scholar
  56. Plieninger T, Rolo V, Moreno G (2010) Large-scale patterns of Quercus ilex, Quercus suber, and Quercus pyrenaica regeneration in Central-Western Spain. Ecosystems 13(5):644–660CrossRefGoogle Scholar
  57. Plieninger T, Hartel T, Martín-López B, Beaufoy G, Bergmeier E, Kirby K, Montero MJ, Moreno G, Oteros-Rozas E, Van Uytvanck J (2015) Wood-pastures of Europe: geographic coverage, social–ecological values, conservation management, and policy implications. Biol Cons 190:70–79CrossRefGoogle Scholar
  58. Puech C, Poggi S, Baudry J, Aviron S (2015) Do farming practices affect natural enemies at the landscape scale? Landscape Ecol 30:125–140CrossRefGoogle Scholar
  59. Rivest D, Paquette A, Moreno G, Messier C (2013) A meta-analysis reveals mostly neutral influence of scattered trees on pasture yield along with some contrasted effects depending on functional groups and rainfall conditions. Agr Ecosyst Environ 165:74–79CrossRefGoogle Scholar
  60. Rolo V, Plieninger T, Moreno G (2013) Facilitation of holm oak recruitment through two contrasted shrubs species in Mediterranean grazed woodlands: patterns and processes. J Veg Sci 24:344–355CrossRefGoogle Scholar
  61. Ruiz-Mirazo J, Robles AB (2012) Impact of targeted sheep grazing on herbage and holm oak saplings in a silvopastoral wildfire prevention system in south-eastern Spain. Agrofor Syst 86(3):477–491CrossRefGoogle Scholar
  62. Ruiz-Peinado R, Moreno M, Juárez E, Montero G, Roig S (2013) The contribution of two common shrub species to aboveground and belowground carbon pool in Iberian Dehesas. J Arid Environ 91:22–30CrossRefGoogle Scholar
  63. Santos-Reis M, Correia AI (1999) Caracterização da flora e fauna do montado da Herdade da Ribeira Abaixo (Grândola—Baixo Alentejo). Centro de Biologia Ambiental, LisboaGoogle Scholar
  64. Schnabel S, Ferreira A (eds) (2004) Sustainability of agrosilvopastoral systems-dehesas, Montados. Advances in GeoEcology. Catena Verlag, ReiskirchenGoogle Scholar
  65. Seddaiu G, Porcu G, Ledda L, Roggero PP, Agnelli A, Corti G (2013) Soil organic matter content and composition as influenced by soil management in a semi-arid Mediterranean agro-silvo-pastoral system. Agr Ecosyst Environ 167:1–11CrossRefGoogle Scholar
  66. Shakesby RA, Coelho COA, Schnabel S, Keizer JJ, Clarke MA, Lavado Contador JF, Doerr SH (2002) A ranking methodology for assessing relative erosion risk and its application to dehesas and montados in Spain and Portugal. Land Degrad Dev 13(2):129–140CrossRefGoogle Scholar
  67. Simões MP, Belo AF, Fernandes M, Madeira M (2016) Regeneration patterns of Quercus suber according to montado management systems. Agrofor Syst 90(1):107–115CrossRefGoogle Scholar
  68. Smit C, den Ouden J, Müller-Schärer H (2006) Unpalatable plants facilitate tree sapling survival in wooded pastures. J Appl ecol 43(2):305–312CrossRefGoogle Scholar
  69. Torralba M, Fagerholm N, Burgess P, Moreno G, Plieninger T (2016) Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agr Ecosyst Environ 230:150–161CrossRefGoogle Scholar
  70. Upson MA, Burgess PJ, Morison JIL (2016) Soil carbon changes after establishing woodland and agroforestry trees in a grazed pasture. Geoderma 283:10–20CrossRefGoogle Scholar
  71. Varga A, Zs Molnár (2014) The role of traditional ecological knowledge in managing wood-pastures. In: Hartel T, Plininger T (eds) European wood-pastures in transition. Routledge, London, pp 187–202Google Scholar
  72. Varga A, Ódor P, Molnár Z, Boloni J (2015) The history and natural regeneration of a secondary oak-beech woodland on a former wood-pasture in Hungary. Acta Soc Bot Pol 84(2):215–225CrossRefGoogle Scholar
  73. Varga A, Molnár Z, Biró M, Demeter L, Gellény K, Miókovics E, Molnár Á, Molnár K, Ujházy N, Ulicsni V, Babai D (2016) Changing year-round habitat use of extensively grazing cattle, sheep and pigs in East-Central Europe between 1940 and 2014: consequences for conservation and policy. Agr Ecosyst Environ 234:142–153CrossRefGoogle Scholar
  74. Walter C, Merot P, Layer B, Dutin G (2003) The effect of hedgerows in soil organic carbon storage on hillslopes. Soil Use Manag 3:201–207CrossRefGoogle Scholar
  75. Zianis D, Pantera A, Papadopoulos A, Mosquera Losada MR (2017) Bayesian and classical biomass allometries for open grown valonian oaks (Q. ithaburensis subs. macrolepis L.) in a silvopastoral system. Agroforest Syst. doi: 10.1007/s10457-016-0060-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • G. Moreno
    • 1
    Email author
  • S. Aviron
    • 2
  • S. Berg
    • 3
  • J. Crous-Duran
    • 4
  • A. Franca
    • 5
  • S. García de Jalón
    • 6
  • T. Hartel
    • 7
  • J. Mirck
    • 8
  • A. Pantera
    • 9
  • J. H. N. Palma
    • 4
  • J. A. Paulo
    • 4
  • G. A. Re
    • 5
  • F. Sanna
    • 5
  • C. Thenail
    • 2
  • A. Varga
    • 10
  • V. Viaud
    • 2
  • P. J. Burgess
    • 6
  1. 1.Forest Research GroupUniversity of ExtremaduraPlasenciaSpain
  2. 2.INRARennesFrance
  3. 3.The European Forest InstituteJoensuuFinland
  4. 4.Forest Research Centre, School of AgricultureUniversity of LisbonLisbonPortugal
  5. 5.CNR-ISPAAMSassariItaly
  6. 6.School of Water, Energy and EnvironmentCranfield UniversityCranfieldUK
  7. 7.Department of Environmental StudiesSapientia Hungarian University of TransylvaniaCluj NapocaRomania
  8. 8.Department of Soil Protection and RecultivationBrandenburg University of Technology Cottbus – SenftenbergCottbusGermany
  9. 9.Department of Forestry& Natural EnvironmentTEI Stereas ElladasKarpenissiGreece
  10. 10.MTA Centre for Ecological ResearchVácrátótHungary

Personalised recommendations