Agroforestry Systems

, Volume 93, Issue 1, pp 333–344 | Cite as

Diverse strategies for integration of forestry and livestock production

  • Adriana Bussoni
  • Jorge Alvarez
  • Frederick Cubbage
  • Gustavo Ferreira
  • Valentin PicassoEmail author


Global changes in land use and increased forestry plantations have reduced the livestock area in Uruguay, and silvopastoral systems have recently emerged. This paper aimed to quantify these new systems, and to identify the diversity of patterns of integration of forestry and livestock production. Based on detailed data from the 2011 Uruguay Census of Agriculture a multi dimensional scaling analysis was performed on land tenure, land use, livestock management, and socio-economic continuous and categorical variables, followed by a cluster analysis, which resulted in seven groups. The first four groups were primarily livestock farmers, with forests providing services to livestock farming, and timber production coming second in economic importance. These groups differ mainly in cattle orientation, land ownership and farm size. The other three groups were primarily foresters, with livestock grazing in their lands. These groups differ in the legal organization (individual foresters vs corporations), farm size, and integration with livestock. The identification of these contrasting strategies for integration can inform future research and policies for the sustainability of silvopastoral systems in the region.


Silvopastoral systems Livestock Cluster analysis Grazing Typology Agroforestry Uruguay South America 



This work is funded by the Facultad de Agronomia – UDELAR (University of Uruguay), INIA-Uruguay (National Agriculture Research Institute) Grant FPTA 300, and the National Agency for Research and Innovation (ANII-Uruguay) doctoral fellowship to Adriana Bussoni. Special thanks to Federico and Magela from Agronegocios, who helped with data analysis, and anonymous reviewers who improved the quality of the manuscript.


  1. Alvarez S, Paas W, Descheemaeker K, et al (2014) Typology construction, a way of dealing with farm diversity: general guidelines for humidtropicsGoogle Scholar
  2. Boon TE, Meilby H, Thorsen JB (2004) An empirically based typology of private forest owners in Denmark: improving communication between authorities and owners. Scand J For Res 19:45–55CrossRefGoogle Scholar
  3. Carriquiry R, Morales H, De Hegedus P, Tourrand J (2012) Heterogeneity and vulnerability of livestock in forest plantations of Uruguay. In: International Farming Systems Association (ed) X International Farming Systems. Aarhus University, AarhusGoogle Scholar
  4. Casi H (1999) KWALLIS2: stata module to perform Kruskal-Wallis Test for equality of populations. Statistical Software Components S379201.
  5. Collado MD, Byrne TJ, Amer PR et al (2015) Analyzing the heterogeneity of farmers’ preferences for improvements in dairy cow traits using farmer typologies. J Dairy Sci 98:4148–4161. doi: 10.3168/jds.2014-9194 CrossRefGoogle Scholar
  6. Crossa J, Franco J (2004) Statistical methods for classifying genotypes. Euphytica 137:19–37. doi: 10.1023/B:EUPH.0000040500.86428.e8 CrossRefGoogle Scholar
  7. Cubbage F, Balmelli G, Bussoni A et al (2012) Comparing silvopastoral systems and prospects in eight regions of the world. Agrofor Syst 86:303–314. doi: 10.1007/s10457-012-9482-z CrossRefGoogle Scholar
  8. Everitt B, Hothorn T (2011) Use R!. Springer, New YorkGoogle Scholar
  9. Ferreira G (1997) An evolutionary approach to farming decision making on extensive rangelands. University of EdinburghGoogle Scholar
  10. Franco J (1998) Clasificación de observaciones utilizando variables discretas y continuas simultáneamente. Universidad Autónoma de ChapingoGoogle Scholar
  11. Gaspar P, Mesías FJ, Escribano M et al (2007) Economic and management characterization of dehesa farms: implications for their sustainability. Agrofor Syst 71:151–162. doi: 10.1007/s10457-007-9081-6 CrossRefGoogle Scholar
  12. Goswami R, Chatterjee S, Prasad B (2014) Farm types and their economic characterization in complex agro-ecosystems for informed extension intervention: study from coastal West Bengal, India. Agric Food Econ 2:5. doi: 10.1186/s40100-014-0005-2 CrossRefGoogle Scholar
  13. Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–871. doi: 10.2307/2528823 CrossRefGoogle Scholar
  14. Gramann J, Marty T, Kurtz W (1985) A logistic analysis of the effects of beliefs and past experience on management plans for non-industrial private forests. J Environ Manag 20:177–185Google Scholar
  15. Ingemarson F, Lindhagen A, Eriksson L (2006) A typology of small-scale private forest owners in Sweden. Scand J For Res 21:249–259. doi: 10.1080/02827580600662256 CrossRefGoogle Scholar
  16. Jennings SM, Van Putten IE (2006) Typology of non-industrial private forest owners in Tasmania. Small-Scale For 5:37–56. doi: 10.1007/s11842-006-0003-7 CrossRefGoogle Scholar
  17. Kruskal W, Wallis A (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621CrossRefGoogle Scholar
  18. Madry W, Mena Y, Roszkowska-Madra B et al (2013) An overview of farming system typology methodologies and its use in the study of pasture-based farming system: a review. Span J Agric Res 11:316–326. doi: 10.5424/sjar/2013112-3295 CrossRefGoogle Scholar
  19. MGAP (2013) Direccion Forestal - Superficie Total de Bosques.,dgf,dgf-recurso-forestal,O,es,0. Accessed 15 May 2015
  20. MGAP (2015a) Dicose - Direccion General de Semovientes - Datos Generales de la Declaración Jurada ante DICOSE al 30 de junio de cada año.,dgsg,dgsg-dicose-institucional,O,es,0. Accessed 15 May 2015
  21. MGAP (2015b) Censo General Agropecuario 2011.,diea,diea-censo-2011,O,es,0. Accessed 15 May 2015
  22. Modernel P, Rossing WA, Corbeels M, Dogliotti S, Picasso VD, Tittonell P (2016) Land use change and ecosystem service provision in Pampas and Campos grasslands of southern South America. Environ Res Lett 11:113002CrossRefGoogle Scholar
  23. Mondelli M, Picasso V (2001) Trayectorias Tecnológicas en la Ganadería Uruguaya: Un enfoque Evolucionista. Tesis Ing. Agr. Facultad de Agronomia. Universidad de la República. Montevideo, UruguayGoogle Scholar
  24. Mooi E, Sarstedt M (2011) Cluster Analysis. In: Mooi E, Sarstedt M (eds) A concise guide to market research, 2011th edn. Springer, Berlin, pp 237–284CrossRefGoogle Scholar
  25. Nair PKR (1985) Classification of agroforestry systems. Agrofor Syst 3:97–128. doi: 10.1007/BF00122638 CrossRefGoogle Scholar
  26. Nair RPK, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23CrossRefGoogle Scholar
  27. Novais A, Canadas MJ (2010) Understanding the management logic of private forest owners: a new approach. For Policy Econ 12:173–180. doi: 10.1016/j.forpol.2009.09.010 CrossRefGoogle Scholar
  28. Nuberg I, George B, Reid R (2009) Agroforestry for natural resource management. CSIRO, CollingwoodCrossRefGoogle Scholar
  29. Peri PL, Dube F, Costa Varella A (2016) Silvopastoral systems in the subtropical and temperate zones of South America: an overview. In: Peri PL, Dube F, Costa Varella A (eds) Silvopastoral systems in southern South America. Springer, Gainesville, pp 1–8CrossRefGoogle Scholar
  30. Pou R (2016) Forestación en Uruguay, First. Plus_Ultra, MontevideoGoogle Scholar
  31. Prieto V, Wins R (2007) Comparación de diferentes agrupamientos generados utilizando técnicas multivariadas y distintos tipos de variables. Universidad de la RepúblicaGoogle Scholar
  32. Rabe-Hesketch S, Everitt B (2004) Handbook of statistical analysis using Stata, 3rd edn. Chapman & Hall/CRC, NYGoogle Scholar
  33. Richter J, Lewis B (2007) Reaching out to family forest owners: an examination of information behaviors by attitudinal type. In: Miner C, Jacobs R, Dykstra D, Bittner B (eds) International conference on transfer of forest science knowledge and technology. General technical report PNW-GTR-726. USDA Forest Service, Oregon, pp 209–217Google Scholar
  34. Rois-Díaz M, Mosquera-Losada R, Antonio R-R (2006) Biodiversity indicators on silvopastoralism across Europe. EFI, JoensuuGoogle Scholar
  35. Somarriba E, Beer J, Alegre-Orihuela J, et al (2012) Mainstreaming agroforestry in Latin America. In: Agroforestry—the future of global land use advances in agroforestry, pp 429–453CrossRefGoogle Scholar
  36. StataCorp LP (2015) Stata user’s guideGoogle Scholar
  37. Torres A, Casella Ma, Cedres A, et al (1995) Diagnóstico de Sistemas Agroforestales del UruguayGoogle Scholar
  38. Urquhart J, Courtney P (2011) Seeing the owner behind the trees: a typology of small-scale private woodland owners in England. For Policy Econ 13:535–544. doi: 10.1016/j.forpol.2011.05.010 CrossRefGoogle Scholar
  39. Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Adriana Bussoni
    • 1
  • Jorge Alvarez
    • 1
  • Frederick Cubbage
    • 2
  • Gustavo Ferreira
    • 1
  • Valentin Picasso
    • 1
    • 3
    Email author
  1. 1.Facultad de AgronomíaUniversidad de la República (UDELAR)MontevideoUruguay
  2. 2.North Carolina State UniversityRaleighUSA
  3. 3.University of Wisconsin – MadisonMadisonUSA

Personalised recommendations