Advertisement

Agroforestry Systems

, Volume 91, Issue 5, pp 941–954 | Cite as

Carbon storage in agroforestry systems in the semi-arid zone of Niayes, Senegal

  • Diatta MaroneEmail author
  • Vincent Poirier
  • Marie Coyea
  • Alain Olivier
  • Alison D. Munson
Article

Abstract

Agroforestry is an ancient practice widespread throughout Africa. However, the influence of Sahelian agroforestry systems on carbon storage in soil and biomass remains poorly understood. We evaluated the carbon storage potential of three agroforestry systems (fallow, parkland and rangeland) and five tree species (Faidherbia albida, Acacia raddiana, Neocarya macrophylla, Balanites aegyptiaca and Euphorbia balsamifera) growing on three different soils (clay, sandy loam and sandy) in the Niayes zone, Senegal. We calculated tree biomass carbon stocks using allometric equations and measured soil organic carbon (SOC) stocks at four depths (0–20, 20–50, 50–80 and 80–100 cm). F. albida and A. raddiana stored the highest amount of carbon in their biomass. Total biomass carbon stocks were greater in the fallow (40 Mg C ha−1) than in parkland (36 Mg C ha−1) and rangeland (29 Mg C ha−1). More SOC was stored in the clay soil than in the sandy loam and sandy soils. On average across soil texture, SOC stocks were greater in fallow (59 Mg C ha−1) than in rangeland (30 Mg C ha−1) and parkland (15 Mg C ha−1). Overall, the total amount of carbon stored in the soil + plant compartments was the highest in fallow (103 Mg C ha−1) followed by rangeland (68 Mg C ha−1) and parkland (52 Mg C ha−1). We conclude that in the Niayes zones of Senegal, fallow establishment should be encouraged and implemented on degraded lands to increase carbon storage and restore soil fertility.

Keywords

Fallow Parkland Rangeland Soil organic carbon Tree biomass carbon 

Notes

Acknowledgments

We thank all the institutions that supported and financed this study, specifically: Natural Sciences and Engineering Research Council (AD Munson Université Laval); the International Development Research Centre (IDRC), the Millennium Village Project (Senegal), the Senegalese Institute for Agricultural Research (ISRA) under the FUNCiTree project, and the West Africa Agricultural Productivity Program (WAAPP). We thank the technicians who collaborated and provided support in the field: Ousmane Ndiaye, Mika Diallo, Ali Diouf and Yandé Senghor.

References

  1. Aguiar LA (2009) Impact de la variabilité climatique récente sur les écosystèmes des Niayes du Sénégal entre 1950 et 2004. Thèse de doctorat, Université du Québec à MontréalGoogle Scholar
  2. Akpo L, Grouzis M, Ba AT (1995) L’arbre et l’herbe au Sahel: effet de l’arbre sur la composition chimique des pâturages naturels du Nord-Sénégal (Afrique de l’Ouest). Revue Médecine Vétérinaire146 (10): 663–670Google Scholar
  3. Albreicht A, Kandji ST (2003) Carbon sequestration in tropical agriculture. Ecosyst Environ 99:15–27CrossRefGoogle Scholar
  4. Ali A, Diedhiou A, Lebel T (2005) Rainfall estimation in Sahel. Part II: evaluation of rain gauge network in the CILSS countries and objective intercomparison of rainfall products. J Appl Meteorol 44:1707–1722CrossRefGoogle Scholar
  5. Bationo BA, Kalinganiré A, Bayala J (2012) Potentialités des ligneux dans la pratique de l’agriculture de conservation dans les zones arides et semi-arides de l’Afrique de l’Ouest: Aperçu de quelques systèmes candidats. ICRAF Technical Manual no 17 Nairobi, World Agroforestry CentreGoogle Scholar
  6. Bayal J, Kalinganire A, Tchoundjeu Z, Sinclair F, Garrity D (2011) Conservation agriculture with trees in the West Africa Sahel—a review. ICRAF Occasional paper No.14. World Agroforestry Centre, NairobiGoogle Scholar
  7. Boffa JM (1999) Agroforestry parklands in sub-saharian Africa. FAO Conservation Guides 34. FAO, RomeGoogle Scholar
  8. Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11CrossRefPubMedGoogle Scholar
  9. Cerdá A (2000) Aggregate stability against water forces under different climates on agriculture land and scrubland in southern Bolivia. Soil Tillage Res 57:159–166CrossRefGoogle Scholar
  10. Code forestier du Sénégal (1999) Loi no 98 - 03 du 08 juin 1998, décret d’application no 98-164 du 20 février 1998. Ministère de l’Environnement et de la Protection de la nature du Sénégal, DakarGoogle Scholar
  11. Dube F, Espinosa M, Stolpe NB, Zagal E, Thevathasan NV, Gordon AM (2012) Productivity and carbon storage in silvopastoral systems with Pinus ponderosa and Trifolium spp., plantations and pasture on an Andisol in Patagonia, Chile. Agrofor Syst 86:113–128CrossRefGoogle Scholar
  12. Dubey PK, Yogi M, Bharadwj A, Soni ML, Singh A, Sachan AK (2011) Balanites aegyptiaca (L.) Del., a semi-arid forest tree: a review. Acad J Plant Sci 4(1):12–18Google Scholar
  13. Fall AS, Fall ST, Cissé I, Badiane AN, Diao MB, Fall CA (2001) Cités horticoles en sursis? L’agriculture urbaine dans les grandes Niayes au Sénégal. C.R.D.I., Ottawa, CanadaGoogle Scholar
  14. Faye E (2010) Diagnostic partiel de la flore et de la végétation des Niayes et du Bassin arachidier au Sénégal: application de méthodes floristiques, phytosociologique, ethnobotanique et cartographique. Thèse de doctorat, Université libre de Bruxelles, Université d’Europe, Bruxelles, BelgiqueGoogle Scholar
  15. GIEC (2003) Good Pratice Guidance for Land Use, Land-use Change and Forestry (LULUCF). Institute for Global Environment Strategies (IGES) for ICP. Kamiyamaguchi, Hayama, KanagaGoogle Scholar
  16. Gouzis M, Le Floc’h E (2003) Un arbre au désert: Acacia raddiana. IRD (Éditions), ParisGoogle Scholar
  17. Gueye M, Ndoye I (2003) Le potentiel fixateur d’azote d’Acacia raddiana comparé à celui d’Acacia senegal, Acacia seyal et Faidherbia albida. In: Grouzis M, Le Floc’h E (eds) Un arbre du désert: Acacia raddiana. IRD (Editions), ParisGoogle Scholar
  18. Gupta N, Kulal SS, Bawa SS, Dhaliwal GS (2009) Soil organic carbon and aggregation under poplar based agroforestry system in relation to tree age and soil type. Agrofor Syst 76:27–35CrossRefGoogle Scholar
  19. Hannani A, Chehma A (2012) Développement végétatif et longévité de l’Acacia raddiana au Sahara septentrional. Revue des BioRessources 2:50–57Google Scholar
  20. Hassink J, Bouwman LA, Zwart KB, Bloem J, Brussaard L (1993) Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils. Geoderma 57(1–2):105–128CrossRefGoogle Scholar
  21. Henry M, Picard N, Trotta C, Manley RJ, Valentini R, Bernoux M, Saint-André L (2011) Estimating tree biomass of Sub-Saharian African forest: a review of available allometric equations. Silva Fennica 45(3B):477–569CrossRefGoogle Scholar
  22. Hiernaux P, Le Houérou HN (2006) Les Parcours du Sahel. Sécheresse 17(1–2):51–71Google Scholar
  23. Jones A, Breuning-Madsen H, Brossard, M, Dampha A, Deckers J, Dwitte O, Gallali T, Hallet S, Jones R, Kilasara M, Le Roux P, Micheli E, Montanarella L, Spaargaren O, Thiombano L, Van Ranst E, Yemefack M, Zougmore R (eds) (2013) Soil atlas of Africa. European Commission, Publications Office of European Union, Luxembourg. 176 ppGoogle Scholar
  24. Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10CrossRefGoogle Scholar
  25. Khouma M, Ndiaye R, Cissé I, Fall S T, Diom F, Ndiaye NSF, Thomas I (2004) Les sols des Niayes: Caractérisation, évolution en fonction des changements hydro-climatiques. Notes de recherche, Laboratoire national de recherche sur les productions végétales (LNRPV), DakarGoogle Scholar
  26. Koulibaly B, Traoré O, Dakuo D, Zombré PN, Bondé D (2010) Effets de la gestion des résidus de récolte sur les rendements et les bilans culturaux d’une rotation cotonnier-maïs-sorgho au Burkina Faso. Tropicultura 28(3):184–189Google Scholar
  27. Larwanou M, Saadou M, Hamadou S (2006) Les arbres dans les systèmes en zone sahélienne du Niger: mode de gestion, atouts et contraintes. Tropicultura 1:14–18Google Scholar
  28. Lhoste P, Richard D (1993) Contribution de l’élevage à la gestion de la fertilité à l’échelle du terroir. In: 10ème Journée du réseau érosion du 15 au 18 septembre 1993, Montpellier, France, pp 463–489Google Scholar
  29. Liu S, Kairé M, Wood E, Diallo O, Tiezen LL (2004) Impacts of land use and climate change on carbon dynamics in South-Central Senegal. J Arid Environ 59:583–604CrossRefGoogle Scholar
  30. Manlay R (1994) Jachère et gestion de la fertilité en Afrique de l’Ouest : Suivi de quelques indicateurs agro-écologiques dans deux sites du Sénégal. Diplôme d’Étude Approfondies Université d’AIX-Marseille, FranceGoogle Scholar
  31. Manlay RJ, Chotte J-L, Masse D, Laurent J-Y, Feller C (2002) Carbon, nitrogen and phosphorus allocation in agro-ecosystems of a West Africa savanna III. Plant and soil components under continuous cultivation. Agric Ecosyst Environ 88:249–269CrossRefGoogle Scholar
  32. Marone D (2012) Les brise-vent au Sénégal: quand le capital se fait social et humain. Sahel Agroforesterie 16:5–6Google Scholar
  33. Montagnini F, Nair PKR (2004) Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agrofor Syst 61:281–295Google Scholar
  34. Nair PKR (2012) Carbon sequestration studies in agroforestry systems: a reality-check. Agrofor Syst 86:243–253CrossRefGoogle Scholar
  35. Ndiaye O, Diallo A, Matty F, Thiaw A, Fall RD, Guissé A (2012) Caractérisation des sols de la zone des Niayes de Pikine et de Saint-Louis (Sénégal). Int J Biol Chem Sci 6(1):519–528Google Scholar
  36. Ndoye I, Gueye M, Danso SKA, Dreyfus B (1995) Nitrogen fixing in Faidherbia albida, Acacia raddiana, Acacia senegal and Acacia seyal estimated using the 15N isotope dilution technique. Plant Soil 172:175–180CrossRefGoogle Scholar
  37. Ndoye M, Diallo I, Gassama YK (2004) Reproductive biology in Balanites aegyptiaca (L.) Del, a semi-aride forest tree. Afr J Biotechnol 3(1):40–46CrossRefGoogle Scholar
  38. Ndoye S, Ndiaye B, Diop C (2006) Analyse pédologique de la région des Niayes au Sénégal. Journal des Sciences pour l’Ingénieur 6:47–55Google Scholar
  39. Peichl M, Thevathasan NV, Gordon AM, Huss J, Abohassan RA (2006) Carbon sequestration potentials in temperate tree-based intercropping systems, southern Ontario, Canada. Agrofor Syst 66:243–257CrossRefGoogle Scholar
  40. Phillips CJ, Marden M, Lambie S, Watson A, Ross C, Fraser S (2013) Observations of below-ground characteristics of young redwood trees (Sequoia sempervirens) from two sites in New Zealand-implication for erosion control. Plant Soil 363:33–48CrossRefGoogle Scholar
  41. Quarro M (2006) Le sylvo-pastoralisme et la gestion durable des écosystèmes naturels arides. In: Water Management and Soil Conservation in Semi-Arid Environments. 14th International Soil Conservation organization conference, Marrakech, MarocGoogle Scholar
  42. Roupsard O (1997) Écophysiologie et diversité génétique de Faidherbia albida (Del.) A. Chev., un arbre à usages multiples d’Afrique semi-aride. Fonctionnement hydrique et efficience d’utilisation de l’eau d’arbres adultes en parc agroforestier et de juvéniles en conditions semi-contrôlées. Thèse de doctorat, Université Henri Poincaré de Nacy 1, FranceGoogle Scholar
  43. Saha SK, Nair PKR, Nair VD, Kumar M (2009) Soil carbon stock in relation to plant diversity of homegardens in Kerala, India. Agrofor Syst 76:53–65CrossRefGoogle Scholar
  44. Saha SK, Nair PKR, Nair VD, Kumar BM (2010) Carbon storage in relation to soil size fractions under tropical tree-based land-use systems. Plant Soil 328:433–446CrossRefGoogle Scholar
  45. Sarr O, Diatta S, Gueye M, Ndiaye PM, Guissé A, Akpo LE (2013) Importance des ligneux fourragers agropastoral au Sénégal (Afrique de l’Ouest). Revue Médecine Vétérinaire 164 (1): 2-8Google Scholar
  46. SAS Institute (2004) SAS/ETS Software: application guide1-time series modeling and forecasting, financial reporting and loan analysis. Version 6. First editionGoogle Scholar
  47. Serpantié G, Ouattara B (2001) Fertilité et jachères en Afrique de l’Ouest. In Fertilité et jachères en Afrique de l’Ouest. In Florette et Pontanier (éd) (2001), pp 21-83Google Scholar
  48. Shrestha BM, Singh BR, Sitaula BK, Lal R, Bajracharya RM (2007) Soil aggregate-and particle- associated organic carbon under different land uses in Nepal. Soil Sci Soc Am J 71:1194–1203CrossRefGoogle Scholar
  49. SigmaPlot (2011) Systat Software, Inc., version 12.5 San Jose, CA, USAGoogle Scholar
  50. Six J, Contant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176CrossRefGoogle Scholar
  51. Somé NA, Traoré K, Traoré O, Tassembedo M (2007) Potentiel des jachères artificielles à Andropogon spp dans l’amélioration des propriétés chimiques et biologiques des sols en zone soudanienne (Burkina Faso). Biotechnologie Agronomie Société et Environnement 11(3):245–252Google Scholar
  52. Takimoto A, Nair VD, Nair PKR (2008) Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agric Ecosyst Environ 125:159–166CrossRefGoogle Scholar
  53. Tschakert P, Khouma M, Sene M (2004) Biophysical potential for soil carbon sequestration in agricultural systems of the Old Peanut Basin of Senegal. J Arid Environ 59:511–533CrossRefGoogle Scholar
  54. Udawatta RP, Jose S (2011) Carbon sequestration potential of agroforestry practices in temperate North America. In: Kumar BM and Nair PKR (eds) Carbon sequestration potential of agroforestry systems: opportunities and challenges. Advances in Agroforestry 8:17–42Google Scholar
  55. Von Maydell HJ (1983) Arbres et arbustes du Sahel. Leurs caractéristiques et leurs utilisations. Eschborn, GTZ, publication 147, AllemagneGoogle Scholar
  56. Waneukem V, Ganry F (1992) Relations entre les formes d’azote organique du sol et l’azote absorbé par la plante dans un sol ferralitique du Sénégal. Cahiers ORSTOM, Séries Pédologie27 (1): 97–107Google Scholar
  57. Woomer PL, Tieszen LL, Tappan G, Sall M (2004) Land use change and carbon stocks in Senegal. J Arid Environ 59:625–642CrossRefGoogle Scholar
  58. Young A (1989) Agroforestry for Soil Conservation. ICRAF Science and Practice of Agroforestry, NairobiGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Diatta Marone
    • 1
    • 2
    Email author
  • Vincent Poirier
    • 1
    • 4
  • Marie Coyea
    • 1
  • Alain Olivier
    • 3
  • Alison D. Munson
    • 1
  1. 1.Centre d’étude de la forêt, Département des sciences du bois et de la forêt, Faculté de foresterie, géographie et géomatiqueUniversité LavalQuébecCanada
  2. 2.Institut Sénégalais de Recherches Agricoles/Centre de recherche agricole de Saint-LouisSaint-LouisSenegal
  3. 3.Département de phytologie, Faculté des sciences de l’agriculture et de l’alimentationUniversité LavalQuébecCanada
  4. 4.Unité de recherche et de développement en agroalimentaireUniversité du Québec en Abitibi-TémiscamingueNotre-Dame-du-NordCanada

Personalised recommendations