Agroforestry Systems

, Volume 91, Issue 3, pp 577–596 | Cite as

Rubber intercropping: a viable concept for the 21st century?

  • Gerhard LangenbergerEmail author
  • Georg Cadisch
  • Konrad Martin
  • Shi Min
  • Hermann Waibel


The last decades brought along a tremendous expansion of rubber plantations as well as respective socio-economic transformations. This paper reviews the historical development of rubber cultivation with special reference to intercropping and illustrates the major development steps. The agronomic challenges of intercropping are analyzed and a management classification scheme is suggested. Though the topic of labor always accompanied rubber management, it is nowadays of even higher relevance due to alternative income options, be it due to competing crops such as oil palm, or be it off-farm income opportunities. This development challenges labor intensive permanent intercropping systems. It can thus be concluded that the permanent integration of additional plants needs either to be highly profitable or at least be labor extensive to be adopted on a considerable scale. Given the large area of rubber plantations the latter seems to be more realistic. In this context timber trees might offer promising options if tree selection is properly adapted to site and plantation conditions. Nevertheless, without external interventions, such as land-use planning and implementation, or incentives, the development will be difficult to control.


Cover cropping Ecosystem services and functions Jungle rubber Initial intercropping Permanent intercropping Rubber diversification, rubber-timber intercropping 



This study has been conducted in the framework of the Sino-German “SURUMER Project”, funded by the German Federal Ministry of Education and Research with FKZ: 01LL0919A. We very much appreciate the hospitality of all our local partners and are especially grateful to the staff of the Naban River Watershed National Nature Reserve Bureau for their support, particularly its general director Li Zhongqing and Mr. Liu Feng, director of the science and research department.


  1. Abraham J, Joseph P (2015) A new weed management approach to improve soil health in a tropical plantation crop, rubber (Hevea brasiliensis). Exp Agric 52:36–50CrossRefGoogle Scholar
  2. Ahrends A, Hollingsworth PM, Ziegler AD, Fox JM, Chen H, Su Y, Xu J (2015) Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Global Environ Change 34:48–58CrossRefGoogle Scholar
  3. Alvim R, Nair PKR (1986) Combination of cacao with other plantation crops: an agroforestry system in Southeast Bahia, Brazil. Agrofor Syst 4:3–15CrossRefGoogle Scholar
  4. Aratrakorn S, Thunhikorn S, Donald PF (2006) Changes in bird communities following conversion of lowland forest to oil palm and rubber plantations in southern Thailand. Bird Conserv Int 16:71–82CrossRefGoogle Scholar
  5. Bagnall-Oakeley H et al (1996) Imperata management strategies used in smallholder rubber-based farming systems. Agrofor Syst 36:83–104CrossRefGoogle Scholar
  6. Barlow C (1997) Growth, structural change and plantation tree crops: the case of rubber. World Dev 25:1589–1607CrossRefGoogle Scholar
  7. Baulkwill WJ (1989) The history of natural rubber production. In: Webster CC, Baulkwill WJ (eds) Rubber. Longman Scientific & Technical, Harlow, pp 1–56Google Scholar
  8. Beer J, Muschler R, Kass D, Somarriba E (1998) Shade management in coffee and cacao plantations. Agrofor Syst 38:139–164CrossRefGoogle Scholar
  9. Beukema H, Noordwijk M (2004) Terrestrial pteridophytes as indicators of a forest-like environment in rubber production systems in the lowlands of Jambi, Sumatra. Agric Ecosyst Environ 104:63–73CrossRefGoogle Scholar
  10. Beukema H, Danielsen F, Vincent G, Hardiwinoto S, Jv Andel (2007) Plant and bird diversity in rubber agroforests in the lowlands of Sumatra, Indonesia. Agrofor Syst 70:217–242CrossRefGoogle Scholar
  11. Blencowe JW (1989) Organization and improvement of smallholder production. In: Webster CC, Baulkwill WJ (eds) Rubber. Longman Scientific & Technical, Harlow, pp 499–538Google Scholar
  12. Broughton WJ (1977) Effect of various covers on soil fertility under Hevea brasiliensis Muell. Arg. and on growth of the tree. Agro Ecosyst 3:147–170CrossRefGoogle Scholar
  13. Byerlee D (2014) The fall and rise again of plantations in tropical Asia: History Repeated? Land 3:574CrossRefGoogle Scholar
  14. Carr MKV, Stephens W (1992) Climate, weather and the yield of tea. In: Willson KC, Clifford MN (eds) Tea—cultivation to consumption. Champman & Hall, London, pp 87–135Google Scholar
  15. Challen G (2014) Hevea brasiliensis (rubber tree). Kew Royal Botanic Gardens. Accessed 10 Aug 2014
  16. Chaudhuri PS, Bhattacharjee S, Dey A, Chattopadhyay S, Bhattacharya D (2013) Impact of age of rubber (Hevea brasiliensis) plantation on earthworm communities of West Tripura (India). J Environ Biol 34:59–65PubMedGoogle Scholar
  17. Chee YK, Faiz A (1991) Forage resources in Malaysian rubber estates. In: Shelton HM, Stilr WW (eds) Forages for Plantation Crops, Sanur Beach, Bali, Indonesia, 27–29 June 1990. ACIAR Proceedings, vol No. 32. Australian Centre for International Agricultural Research, G.P.O. Box 1571, Canberra. A.C.T. 2601, pp 32–35Google Scholar
  18. Chong DT, Tajuddin I, Abd. Samat MS (1991) Productivity of Cover Crops and Natural Vegetation under Rubber in Malaysia. In: Shelton HM, Stilr WW (eds) Forages for Plantation Crops, Sanur Beach, Bali, Indonesia, 27–29 June 1990. ACIAR Proceedings, vol No. 32. Australian Centre for International Agricultural Research, G.P.O. Box 1571, Canberra. A.C.T. 2601, pp 36–37Google Scholar
  19. Clarence-Smith WG (2013) Rubber cultivation in Indonesia and the Congo from the 1910s to the 1950s: divergent paths. In: Frankema E, Buelens F (eds) Colonial exploitation and economic development: The Belgian Congo and the Netherlands Indies compared. Routledge explorations in economic history, Routledge, pp 193–210Google Scholar
  20. Cohen PT (2009) The post-opium scenario and rubber in northern Laos: alternative Western and Chinese models of development. Int J Drug Policy 20:424–430PubMedCrossRefGoogle Scholar
  21. DaMatta FM (2004) Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field Crops Res 86:99–114CrossRefGoogle Scholar
  22. Dean W (1987) Brazil and the struggle for rubber: a study in environmental history. Cambridge University Press, CambridgeGoogle Scholar
  23. Delarue J, Chambon B (2012) Thailand: first exporter of natural rubber thanks to its family farmers. Écon Rurale 330–331:191–213CrossRefGoogle Scholar
  24. Descroix F, Snoeck J (2009) Environmental factors suitable for coffee cultivation. In: Wintgens JN (ed) Coffee: growing, processing, sustainable production. Wiley-VCH, Weinheim, pp 168–181Google Scholar
  25. Diaz-Novellon S, Penot E, Arnaud M (2004) Characterisation of biodiversity in improved rubber agroforests in West-Kalimantan, Indonesia: real and potential uses for spontaneous plants. In: Gerold G, Fremerey M, Guhardja E (eds) Land use, nature conservation and the stability of rainforest margins in Southeast Asia. Springer, Berlin, pp 426–444Google Scholar
  26. Dove M (1993) Smallholder rubber and swidden agriculture in Borneo: a sustainable adaptation to the ecology and economy of the tropical forest. Econ Bot 47:136–147CrossRefGoogle Scholar
  27. Dove MR (1994) Transition from native forest rubbers to Hevea brasiliensis (Euphorbiaceae) among tribal smallholders in Borneo. Econ Bot 48:382–396CrossRefGoogle Scholar
  28. Ekanayake PB (2003) Crop diversification and intercropping in tea lands. Trop Agric Res Ext 6:66–70Google Scholar
  29. Fageria NK, Baligar VC, Moreira A, Moraes LAC (2013) Soil phosphorous influence on growth and nutrition of tropical legume cover crops in acidic soil. Commun Soil Sci Plant Anal 44:3340–3364CrossRefGoogle Scholar
  30. FAOSTAT2013 (2013) FAO. Accessed 03 Aug
  31. Feike T, Doluschitz R, Chen Q, Graeff-Hönninger S, Claupein W (2012) How to overcome the slow death of intercropping in the North China Plain. Sustainability 4:2550–2565CrossRefGoogle Scholar
  32. Feintrenie L, Levang P (2009) Sumatra’s rubber agroforests: advent, rise and fall of a sustainable cropping system. Small Scale For 8:323–335CrossRefGoogle Scholar
  33. Feintrenie L, Schwarze S, Levang P (2010) Are local people conservationists? Analysis of transition dynamics from agroforests to monoculture plantations in Indonesia. Ecol Soc 15Google Scholar
  34. Fenske J (2013) “Rubber will not keep in this country”: failed development in Benin, 1897–1921. Explor Econ Hist 50:316–333CrossRefGoogle Scholar
  35. Fox J (2009) Crossing borders, changing landscapes: land-use dynamics in the Golden Triangle. Asia Pacific Issues 92:8Google Scholar
  36. Fox JM, Castella J-C (2013) Expansion of rubber (Hevea brasiliensis) in Mainland Southeast Asia: What are the prospects for small holders? J Peasant Stud 40:155–170CrossRefGoogle Scholar
  37. Fox JM, Castella J-C, Ziegler AD (2011) Swidden, rubber and carbon: can REDD+ work for people and the environment in Montane Mainland Southeast Asia?. CGIAR, CopenhagenGoogle Scholar
  38. George S, Suresh PR, Wahid PA, Nair RB, Punnoose KI (2009) Active root distribution pattern of Hevea brasiliensis determined by radioassay of latex serum. Agrofor Syst 76:275–281CrossRefGoogle Scholar
  39. Giroh DY, Adebayo EF, Jongur AAU (2013) Analysis of labour productivity and constraints of rubber latex exploitation among smallholder rubber farmers in the Niger delta region of Nigeria. Glob J Agr Res 1:16–26Google Scholar
  40. Gouyon A, Foresta HD, Levang P (1993) Does ‘jungle rubber’ deserve its name? An analysis of rubber agroforestry systems in southeast Sumatra. Agrofor Syst 22:181–206CrossRefGoogle Scholar
  41. Guardiola-Claramonte M, Troch PA, Ziegler AD, Giambelluca TW, Durcik M, Vogler JB, Nullet MA (2010) Hydrologic effects of the expansion of rubber (Hevea brasiliensis) in a tropical catchment. Ecohydrology 3:306–314CrossRefGoogle Scholar
  42. Guo Z, Zhang Y, Deegen P, Uibrig H (2006) Economic analyses of rubber and tea plantations and rubber-tea intercropping in Hainan, China. Agrofor Syst 66:117–127CrossRefGoogle Scholar
  43. Haines WB (1934) The uses and control of natural undergrowth on rubber estates. Rubber Research Institute of Malaya, Kuala LumpurGoogle Scholar
  44. Häuser I et al (2015) Environmental and socio-economic impacts of rubber cultivation in the Mekong region: challenges for sustainable land use. CAB Rev 10:1–11Google Scholar
  45. Herath PHMU, Takeya H (2003) Factors determining intercropping by rubber smallholders in Sri Lanka: a logit analysis. Agric Econ 29:159–168CrossRefGoogle Scholar
  46. Iqbal SMM, Ireland CR, Rodrigo VHL (2006) A logistic analysis of the factors determining the decision of smallholder farmers to intercrop: a case study involving rubber–tea intercropping in Sri Lanka. Agric Syst 87:296–312CrossRefGoogle Scholar
  47. Jongrungrot V, Thungwa S (2014) Resilience of rubber-based intercropping systems in southern Thailand. Adv Mat Res 844:24–29Google Scholar
  48. Jongrungrot V, Thungwa S, Snoeck D (2014) Tree-crop diversification in rubber plantations to diversify sources of income for small-scale rubber farmers in Southern Thailand. Bois et Forets des Tropiques 321:21–32Google Scholar
  49. Karim YA (2006) Modelling the rubber tree system. University of London, LondonGoogle Scholar
  50. Killmann W, Hong LT (2000) Rubber wood—the success of an agricultural by-product. Unasylva 51:66–72Google Scholar
  51. Langenberger G, Cadisch G, Martin K (2015) Rubber plantations as repositories for endangered plant species? A case study from SW China. In: Bredemeier M, Steckel J, Seele U (eds) Ecology for a sustainable future, Göttingen, Germany, 31 Aug–04 Sept 2015. Centre for Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, p 1Google Scholar
  52. Lass RA (1985) Diseases. In: Wood GAR, Lass RA (eds) Cocoa. Longman Group Limited, London, pp 265–365Google Scholar
  53. Lawrence DC (1996) Trade-offs between rubber production and maintenance of diversity: the structure of rubber gardens in West Kalimantan, Indonesia. Agrofor Syst 34:83–100CrossRefGoogle Scholar
  54. Li W (ed) (2001) Agro-ecological farming systems in China, vol 26. Man and the biosphere series, vol 26. UNESCO, ParisGoogle Scholar
  55. Li Z, Fox JM (2012) Mapping rubber tree growth in mainland Southeast Asia using time-series MODIS 250 m NDVI and statistical data. Appl Geogr 32:420–432CrossRefGoogle Scholar
  56. Li H, Aide TM, Ma Y, Liu W, Cao M (2007) Demand for rubber is causing the loss of high diversity rain forest in SW China. Biodivers Conserv 16:1731–1745CrossRefGoogle Scholar
  57. Mann CC (2009) Addicted to rubber. Science 325:564–566PubMedCrossRefGoogle Scholar
  58. Meng L-Z, Martin K, Weigel A, Liu J-X (2012) Impact of rubber plantation on carabid beetle communities and species distribution in a changing tropical landscape (southern Yunnan, China). J Insect Conserv 16:423–432CrossRefGoogle Scholar
  59. Michon GH, De Foresta H, Levang P, Verdeaux F (2007) Domestic forests: a new paradigm for integrating local communities’ forestry into tropical forest science. Ecol Soc 12.
  60. Min S, Huang J, Bai J, Waibel H (2015) Adoption of intercropping among smallholder rubber farmers in Xishuangbanna, China. Paper presented at the 29th International conference of agricultural economists, Milan, Italy, Aug 09–14.
  61. Muller RA, Berry D, Avelino J, Bieysse D (2009) Coffee diseases. In: Wintgens JN (ed) Coffee: growing, processing, sustainable production, 2nd edn. Wiley-VCH, Weinheim, pp 495–549Google Scholar
  62. Murray MJ (1992) ‘White gold’ or ‘white blood’? The rubber plantations of colonial Indochina, 1910–40. J Peasant Stud 19:41–67CrossRefGoogle Scholar
  63. Muschler RG (2009) Shade management and its effect on coffee growth and quality. In: Wintgens JN (ed) Coffee: growing, processing, sustainable production, 2nd edn. Wiley-VCH, Weinheim, pp 395–422Google Scholar
  64. Newman SM (1985) A survey of interculture practices and research in Sri Lanka. Agrofor Syst 3:25–36CrossRefGoogle Scholar
  65. Ng KF (1991) Forage species for rubber plantations in Malaysia. In: Shelton HM, Stilr WW (eds) Forages for plantation crops, Sanur Beach, Bali, Indonesia, 27–29 June 1990. ACIAR Proceedings, vol No. 32. Australian Centre for International Agricultural Research, G.P.O. Box 1571, Canberra. A.C.T. 2601, pp 49–53Google Scholar
  66. Ng KF, Stür WW, Shelton HM (1997) New forage species for integration of sheep in rubber plantations. J Agric Sci 128:347–356CrossRefGoogle Scholar
  67. Pathiratna LSS (2006a) Management of intercrops under rubber: implications of competition and possibilities for improvement. Bull Rubber Res Inst Sri Lanka 47:8–16Google Scholar
  68. Pathiratna LSS (2006b) Cinnamon for intercropping under rubber. Bull Rubber Res Inst Sri Lanka 47:17–23Google Scholar
  69. Payne WJA (1985) A review of the possibilities for integrating cattle and tree crop production systems in the tropics. For Ecol Manage 12:1–36CrossRefGoogle Scholar
  70. Penot E (1998) Jungle rubber improvement in Indonesia. IRRDB Inf Q 2:8–17Google Scholar
  71. Penot E (2004) From shifting agriculture to sustainable rubber agroforestry systems (jungle rubber) in Indonesia: a history of innovations processes. In: Babin D (ed) Beyond tropical deforestation. UNESCO/CIRAD, Paris, pp 221–250Google Scholar
  72. Persoon GA (2007) Agarwood: the life of a wounded tree. Int Inst Asian Stud 45:24–25Google Scholar
  73. Phommexay P, Satasook C, Bates P, Pearch M, Bumrungsri S (2011) The impact of rubber plantations on the diversity and activity of understorey insectivorous bats in southern Thailand. Biodivers Conserv 20:1441–1456CrossRefGoogle Scholar
  74. Pierini SV, Warrell DA, De Paulo A, Theakston RDG (1996) High incidence of bites and stings by snakes and other animals among rubber tappers and amazonian indians of the Juruá Valley, Acre State, Brazil. Toxicon 34:225–236PubMedCrossRefGoogle Scholar
  75. Prance GT (1979) Notes on the vegetation of Amazonia III. The terminology of Amazonian forest types subject to inundation. Brittonia 31:26–38CrossRefGoogle Scholar
  76. Priyadarshan PM (2011) Biology of Hevea rubber. CAB International, WallingfordCrossRefGoogle Scholar
  77. Priyadarshan PM, Hoa TTT, Huasun H, de Gonçalves PS (2005) Yielding potential of rubber (Hevea brasiliensis) in sub-optimal environments. J Crop Impr 14:221–247CrossRefGoogle Scholar
  78. Qiu J (2009) Where the rubber meets the garden. Nature 457:246–247PubMedCrossRefGoogle Scholar
  79. Rajasekharan P, Veeraputhran S (2002) Adoption of intercropping in rubber smallholdings in Kerala, India: a tobit analysis. Agrofor Syst 56:1–11CrossRefGoogle Scholar
  80. Rantala L (2006) Rubber plantation performance in the Northeast and East of Thailand in relation to environmental conditions. University of HelsinkiGoogle Scholar
  81. Rigg J (2005) Poverty and livelihoods after full-time farming: a south-east Asian view. Asia Pac Viewpoint 46:2173–2184CrossRefGoogle Scholar
  82. Rodrigo VHL, Stirling CM, Teklehaimanot Z, Nugawela A (2001) Intercropping with banana to improve fractional interception and radiation-use efficiency of immature rubber plantations. Field Crops Res 69:237–249CrossRefGoogle Scholar
  83. Rodrigo VHL, Silva TUK, Munasinghe ES (2004) Improving the spatial arrangement of planting rubber (Hevea brasiliensis Muell. Arg.) for long-term intercropping. Field Crops Res 89:327–335CrossRefGoogle Scholar
  84. Rodrigo VHL, Stirling CM, Silva TUK, Pathirana PD (2005) The growth and yield of rubber at maturity is improved by intercropping with banana during the early stage of rubber cultivation. Field Crops Res 91:23–33CrossRefGoogle Scholar
  85. Ruf F (2011) The myth of complex cocoa agroforests: the case of Ghana. Hum Ecol 39:373–388CrossRefGoogle Scholar
  86. Ruf FO, Penot E, Yoddang (1999) After tropical forests, replantation of rubber and cocoa trees: garden of Eden or chemical inputs? In: INRA; CIRAD: Planetary Garden, Chambery, France, March 1999, pp 318–324Google Scholar
  87. Sanchez MD, Ibrahim TH (1991) Forage species for rubber plantations in Indonesia. Paper presented at the Forages for Plantation Crops, Sanur Beach, Bali, Indonesia, 27–29 June 1990Google Scholar
  88. Schroth G, Coutinho P, Moraes VHF, Albernaz AL (2003) Rubber agroforests at the Tapajós river, Brazilian Amazon—environmentally benign land use systems in an old forest frontier region. Agric Ecosyst Environ 97:151–165CrossRefGoogle Scholar
  89. Schultes RE (1992) Ethnobotany, biological diversity, and the Amazonian Indians. Environ Conserv 19:97–100CrossRefGoogle Scholar
  90. Schwarze S et al (2015) Rubber vs. oil palm: an analysis of factors influencing smallholders’ crop choice in Jambi, Indonesia. EFForTS Discussion Paper Series 11:1–29Google Scholar
  91. Shapiro J (2001) Mao´s war against nature. Studies in Environment and History. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  92. Shelton HM, Stür WW (eds) (1991) Forages for Plantation Crops vol ACIAR Proceedings No. 32. Australian Centre for International Agricultural Research, G.P.O. Box 1571, Canberra, Sanur Beach, Bali, IndonesiaGoogle Scholar
  93. Shigematsu A, Mizoue N, Kajisa T, Yoshida S (2011) Importance of rubberwood in wood export of Malaysia and Thailand. New Forest 41:179–189CrossRefGoogle Scholar
  94. Shigematsu A, Mizoue N, Kakada K, Muthavy P, Kajisa T, Yoshida S (2013) Financial potential of rubber plantations considering rubberwood production: wood and crop production nexus. Biomass Bioenergy 49:131–142CrossRefGoogle Scholar
  95. Snoeck D, Lacote R, Kéli J, Doumbia A, Chapuset T, Jagoret P, Gohet É (2013) Association of hevea with other tree crops can be more profitable than hevea monocrop during first 12 years. Ind Crop Prod 43:578–586CrossRefGoogle Scholar
  96. Somado EA, Becker M, Kuehne RF, Sahrawat KL, Vlek PLG (2003) Combined effects of legumes with rock phosphorus on rice in west Africa. Agron J 95:1172–1178CrossRefGoogle Scholar
  97. Somboonsuke B, Wetayaprasit P, Chernchom P, Pacheerat K (2011) Diversification of smallholder rubber agroforestry system (SRAS) Thailand. Kasetsart J 32:327–339Google Scholar
  98. Stanfield ME (1998) Red rubber, bleeding trees: Violence, slavery, and empire in northwest amazonia, 1850–1933. University of New Mexico Press, AlbuquerqueGoogle Scholar
  99. Stone R (2008) Showdown looms over a biological treasure trove. Science 319:1604PubMedCrossRefGoogle Scholar
  100. Tharian George K, Haridasan V, Sreekumar B (1988) Role of government and structural changes in rubber plantation industry. Econ Polit Weekly 23:M158–M166Google Scholar
  101. Toxopeus H (1985) Botany, types and populations. In: Wood GAR, Lass RA (eds) Cocoa, 4th edn. Longman Group Limited, London, pp 11–37Google Scholar
  102. Ule E (1901a) Ule’s Expedition nach den Kautschuk-Gebieten des Amazonenstromes. Erster Bericht über den Verlauf der Kautschuk-Expedition bis zum Beginn des Jahres 1901. Notizblatt des Königl botanischen Gartens und Museums zu Berlin 3:111–118CrossRefGoogle Scholar
  103. Ule E (1901b) Ule’s Expedition nach den Kautschuk-Gebieten des Amazonenstromes. Zweiter Bericht über den Verlauf der Kautschuk-Expedition vom 1. Januar bis zum Mai des Jahres 1901. Notizblatt des Königl botanischen Gartens und Museums zu Berlin 3:129–134CrossRefGoogle Scholar
  104. Ule E (1903a) Ule’s Expedition nach den Kautschuk-Gebieten des Amazonenstromes. Dritter Bericht über den Verlauf der Kautschuk-Expedition vom Mai bis zum November des Jahres 1901. Notizblatt des Königl botanischen Gartens und Museums zu Berlin 3:224–237CrossRefGoogle Scholar
  105. Ule E (1903b) Ule’s Expedition nach den Kautschuk-Gebieten des Amazonenstromes. Vierter Bericht über den Verlauf der Kautschuk-Expedition vom November 1901 bis zum März 1902. Notizblatt des Königl botanischen Gartens und Museums zu Berlin 4:92–98CrossRefGoogle Scholar
  106. Umar HY, Ugwa IK, Abubakar M, Giroh DY (2008) Analysis of bites and stings by snakes, insects and other animals among rubber (Heave brasiliensis) tappers in Southern Nigeria. J Agric Soc Sci 4:174–176Google Scholar
  107. Waidyunatha UPdS, Wijesinghe DS, Slauss R (1982) Zero-grazed pasture under immature Hevea rubber: improved productivity of Panicum maximum and P. maximum+ Pueraria phaseoloides and their competition with Hevea. J Rubber Res I Sri Lanka 60:17–24Google Scholar
  108. Waliszewski WS (2010) Variation in Thaumatococcus daniellii (Benn.) Benth. and its potential as an intercrop with Hevea brasiliensis (Willd. Ex A. de Juss) Mueller-Argoviensis in West Africa. Bangor UniversityGoogle Scholar
  109. Warren-Thomas E, Dolman PM, Edwards DP (2015) Increasing demand for natural rubber necessitates a robust sustainability initiative to mitigate impacts on tropical biodiversity. Conserv Lett 8:230–241CrossRefGoogle Scholar
  110. Watson GA (1989) Field maintenance. In: Webster CC, Baulkwill WJ (eds) Rubber. Longman Scientific & Technical, Harlow, pp 245–348Google Scholar
  111. Webster CC, Paardekooper EC (1989) The botany of the rubber tree. In: Webster CC, Baulkwill WJ (eds) Rubber. Longman Scientific & Technical, Harlow, pp 57–84Google Scholar
  112. Wessel M (1985) Shade and nutrition. In: Wood GAR, Lass RA (eds) Cocoa. Longman Group Limited, London, pp 166–194Google Scholar
  113. Wibawa G, Joshi L, Noordwijk MV, Penot EA (2006) Rubber based Agroforestry Systems (RAS) as Alternatives for Rubber Monoculture System. Paper presented at the IRRDB annual conference, (2006), Ho-chi-minh city: Viet NamGoogle Scholar
  114. Williams SE, Van Noordwijk M, Penot E, Healey JR, Sinclair FL, Wibawa G (2001) On-farm evaluation of the establishment of clonal rubber in multistrata agroforests in Jambi, Indonesia. Agrofor Syst 53:227–237CrossRefGoogle Scholar
  115. Wilson JR, Ludlow MM (1991) The environment and potential growth of herbage under plantations. Paper presented at the Forages for Plantation Crops, Sanur Beach. Bali, Indonesia, 27–29 June 1990Google Scholar
  116. Wintgens JN (2009) The coffee plant. In: Wintgens JN (ed) Coffee: growing, processing, sustainable production, 2nd edn. Wiley-VCH, Weinheim, pp 3–24Google Scholar
  117. Wintgens JN, Descroix F (2009) Establishing a coffee plantatioin. In: Wintgens JN (ed) Coffee: growing, processing, sustainable production, 2nd edn. Wiley-VCH, Weinheim, pp 182–249Google Scholar
  118. Wolff XY, Coltman RR (1989) Productivity under shade in Hawaii of five crops grown as vegetables in the tropics. J Am Soc Hort Sci 115:175–181Google Scholar
  119. Wood GAR (1985a) Environment. In: Wood GAR, Lass RA (eds) Cocoa, 4th edn. Longman Group Limited, London, pp 38–79Google Scholar
  120. Wood GAR (1985b) Establishment. In: Wood GAR, Lass RA (eds) Cacao. Longman Group Limited, London and New York, pp 119–165Google Scholar
  121. Xie H, Wang P, Yao G (2014) Exploring the dynamic mechanisms of farmland abandonment based on a spatially explicit economic model for environmental sustainability: a case study in Jiangxi Province, China. Sustainability 6:1260–1282CrossRefGoogle Scholar
  122. Xu J (2006) The political, social and ecological transformation of a landscape: the case of rubber in Xishuangbanna, China. Mt Res Dev 26:254–262CrossRefGoogle Scholar
  123. Xu J, Grumbine RE, Beckschäfer P (2014) Landscape transformation through the use of ecological and socioeconomic indicators in Xishuangbanna, Southwest China, Mekong Region. Ecol Indicators 36:749–756CrossRefGoogle Scholar
  124. Yi Z-F, Cannon CH, Chen J, Ye C-X, Swetnam RD (2014) Developing indicators of economic value and biodiversity loss for rubber plantations in Xishuangbanna, southwest China: a case study from Menglun township. Ecol Indicators 36:788–797CrossRefGoogle Scholar
  125. Zeng X, Cai M, Lin W (2012) Improving planting pattern for intercropping in the whole production span of rubber tree. Afr J Biotechnol 11:8484–8490CrossRefGoogle Scholar
  126. Zhou S (1993) Cultivation of Amomum villosum in tropical forests. For Ecol Manage 60:157–162CrossRefGoogle Scholar
  127. Zhou Z (2000) Landscape changes in a rural area in China. Landscape Urban Plann 47:33–38CrossRefGoogle Scholar
  128. Ziegler AD, Fox JM, Xu J (2009) The rubber juggernaut. Science 324:1024–1025PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Gerhard Langenberger
    • 1
    Email author
  • Georg Cadisch
    • 1
  • Konrad Martin
    • 1
  • Shi Min
    • 2
  • Hermann Waibel
    • 2
  1. 1.Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute) (490)University of HohenheimStuttgartGermany
  2. 2.Institute of Development and Agricultural EconomicsLeibniz Universität HannoverHannoverGermany

Personalised recommendations