Wood biomass recovery from chestnut orchards: results from a case study

  • Carla Nati
  • Niccolò Brachetti Montorselli
  • Roberto Olmi


Sweet chestnut has been for many centuries essential to human diet in large areas of Southern Europe. Its cultivation was abandoned in the last century, but is at present under restoration for socioeconomic reasons, representing also an opportunity for allocating woody residues to the energy sector. A little is known from the literature about sweet chestnut pruning, and the aim of the study was to assess the biomass yield and quality, the productivity and costs of the system as well as its energetic balance between inputs and outputs. The yield of recovered wood material amounted to between 22.3 tonnes of dry matter per hectare (tdw ha−1) and 33.3 tdw ha−1. Time consumption for pruning has been related to trees’ DBH, so detecting a linear relationship, although weak, between tree size and the time spent for maintenance. Productivity expressed as tdw per hour varied according to the site and the operating systems adopted accordingly. Costs for the whole chain, excluding transport to the plant facility amounted to 113 or to 430 € t dw −1 depending on the terrain relief and the presence of an underbrush to be cleaned. Wood chips distribution in size classes provided a material unsuitable for non-industrial due to the percentage of oversize particles, probably due to the high presence of twigs. The energy ratio resulted of 30:1 and 21:1 for the two sites. Transportation had the main impact in terms of energy, followed by extraction and chipping phases.


Chestnut orchards Energy balance Pruning Recovery systems Wood biomass 



A special thanks goes to Giovanni Alessandri (Agricis consulting) and Andrea Laschi (PhD at GESAAF—University of Florence).


This work was supported by the Measure 124, Axis 4—Regional Development Programme of the Tuscany Region.

Compliance with ethical standards

Conflict of interest



  1. Agnoletti M (2007) The degradation of traditional landscape in a mountain area of Tuscany during the 19th and 20th centuries: implications for biodiversity and sustainable management. For Ecol Manag 249:5–17. doi: 10.1016/j.foreco.2007.05.032 CrossRefGoogle Scholar
  2. Álvarez-Álvarez P, Díaz-Varela E, Cámara-Obregón A, Afif-Khouri E (2010) Relating growth and nutrition to site factors in young chestnut plantations established on agricultural and forest land in northern Spain. Agrofor Syst 79:291–301. doi: 10.1007/s10457-010-9313-z CrossRefGoogle Scholar
  3. Asikainen A, Pulkkinen P (1998) Comminution of Logging Residues with Evolution 910R chipper, MOHA chipper truck, and Morbark 1200 tub grinder. Int J For Eng 9 (1):47–53. ISSN 1913-2220Google Scholar
  4. Assirelli A, Civitarese V, Fanigliulo R, Pari L, Pochi D, Santangelo E, Spinelli R (2013) Effect of piece size and tree part on chipper performance. Biomass Bioenergy 54:77–82CrossRefGoogle Scholar
  5. Baldini S, Di Fulvio F, Laudati G (2010) Analysis of energy wood supply chain in thinning operations: a case study in a pine stand of Central Italy. [Analisi della filiera di biomassa legnosa proveniente da interventi di diradamento: un caso di studio in una pineta dell’Italia centrale]. Foresta 7:177–189. doi: 10.3832/efor0631-007 (in Italian) CrossRefGoogle Scholar
  6. Bariselli M, Vai N, Maresi G (2013) Biological defence: the interventions’ plan [La difesa biologica: il piano degli interventi]. Agricoltura 41(10 (suppl. 54)):34–35 (in Italian) Google Scholar
  7. Beinhofer B (2010) Comparing the financial performance of traditionally managed beech and oak stands with roomy established and pruned stands. Eur J For Res 129:175–187. doi: 10.1007/s10342-009-0311-5 CrossRefGoogle Scholar
  8. Biondi P, Panaro V, Pellizzi G (1989). Le richieste d’energia del sistema agricolo italiano. [The energy requests of the Italian agricultural system]. In Italian. Progetto finalizzato energetica p.79Google Scholar
  9. Boschiero M, Cherubini F, Nati C, Zerbe S (2016) Life cycle assessment of bioenergy production from orchards woody residues in Northern Italy. J Clean Prod 112:2569–2580. doi: 10.1016/j.jclepro.2015.09.094 CrossRefGoogle Scholar
  10. Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B 26:211–252.
  11. Cofas E, Toma E (2014) Territorial inequality distribution of CAP funds designated to increase the competitiveness of agri-food and forestry Romanian sectors. In: Vision 2020: sustainable growth, economic development, and global competitiveness—proceedings of the 23rd international business information management association conference. Valencia, Spain, vol 1, pp 721–731Google Scholar
  12. Conedera M, Krebs P, Tinner W, Pradella M, Torriani D (2004) The cultivation of Castanea sativa (Mill.) in Europe, from its origin to its diffusion on a continental scale. Veg Hist Archaeobot 13:161–179. doi: 10.1007/s00334-004-0038-7 CrossRefGoogle Scholar
  13. Cutshall J, Dale Greene W, Baker SA (2013) Transpirational drying effects on energy and ash content from whole-tree southern pine plantation chipping operations. South J Appl For 37(3):133–139. doi: 10.5849/sjaf.11-046 CrossRefGoogle Scholar
  14. Darley E, Burleson F, Mateer E, Middleton J, Osterli V (1966) Contribution of burning of agricultural wastes to photochemical air pollution. JAPCA 16(12):685–690. doi:  10.1080/00022470.1966.10468533;
  15. Díaz-Varela R-A, Álvarez-Álvarez P, Diaz-Varela E, Calvo-Iglesias S (2011) Prediction of stand quality characteristics in sweet chestnut forests in NW Spain by combining terrain attributes, spectral textural features and landscape metrics. For Ecol Manag 261:1962–1972. doi: 10.1016/j.foreco.2011.02.023 CrossRefGoogle Scholar
  16. Dunn O J (1964). Multiple comparisons using rank sums. Technometrics 6(3):241-252. doi: 10.1080/00401706.1964.10490181;
  17. Eriksson L (2004) Production of high-grade timber in young stands of scots pine. Scand J For Res 19(sup5):64–73. doi: 10.1080/02827580410017861 CrossRefGoogle Scholar
  18. Estrellan CR, Iino F (2010) Toxic emissions from open burning. Chemosphere 80:193–207. doi: 10.1016/j.chemosphere.2010.03.057 CrossRefPubMedGoogle Scholar
  19. Fratini R, Riccioli F (2009) Le politiche regionali nel sostegno alla selvicoltura. Un caso applicativo in Toscana [Regional policies to support forestry activities. An application case in Tuscany. In Italian] – Atti del “III Congresso Nazionale di Selvicoltura per il miglioramento e la conservazione dei boschi italiani”. ISBN 978-88-87553-16-1, Taormina 16-19 ottobre 2008, p. 1089-1094Google Scholar
  20. Gonçalves C, Evtyugina M, Alves C, Monteiro C, Pio C, Tomé M (2011) Organic particulate emissions from field burning of garden and agriculture residues. Atmos Res 101:666–680. doi: 10.1016/j.atmosres.2011.04.017 CrossRefGoogle Scholar
  21. Gondard H, Romane F, Santa Regina I, Leonardi S (2006) Forest management and plant species diversity in chestnut stands of three Mediterranean areas. Biodivers Conserv 15:1129–1142. doi: 10.1007/s10531-004-3103-8 CrossRefGoogle Scholar
  22. Guadagni A. (2010) Prontuario dell’ingegnere [Engineer Handbook] in Italian. p 970Google Scholar
  23. Hartsough B (2003) Economics of harvesting to maintain high structural diversity and resulting damage to residual trees. West J Appl For 18:133–142.
  24. IFIAS (1975) Energy analysis and economics. workshop report Lidingö, Sweden. Resour Energ 1978:151–204Google Scholar
  25. INFC (2005) Annex 9 “Surface and composition of Italian forests. Chapter 1—Inventory and forestry categories” [Superfici e composizione delle foreste italiane. Capitolo 1—Inventario e categorie forestali] In Italian. Accessed on 26 November, 2014
  26. Keshtkar H, Ashbaugh L (2007) Size distribution of polycyclic aromatic hydro-carbon particulate emission factors from agricultural burning. Atmos Res 41:2729–2739. doi: 10.1016/j.atmosenv.2006.11.043 CrossRefGoogle Scholar
  27. Kruskal WH, Allen Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47(260):583–621. doi: 10.1080/01621459.1952.10483441 CrossRefGoogle Scholar
  28. Maesano M, Picchio R, Lo Monaco A, Neri F, Lasserre B, Marchetti M (2013) Productivity and energy consumption in logging operation in a Cameroonian tropical forest. Ecol Eng 57:149–153. doi: 10.1016/j.ecoleng.2013.04.013 CrossRefGoogle Scholar
  29. Magagnotti N, Spinelli R (eds). 2012. Good practice guidelines for biomass production studies. COST Action FP-0902. Florence: CNR IVALSA. Available at Accessed 18 March 2015]
  30. Magagnotti N, Nati C, Picchi G, Spinelli R (2011) Mechanized thinning of walnut plantations established on ex-arable land Agrofor Syst 82:77–86. doi: 10.1007/s10457-010-9348-1 Google Scholar
  31. Maltoni A, Mariotti B, Jacobs DF, Tani A (2012) Pruning methods to restore Castanea sativa stands attacked by Dryocosmus kuriphilus. New For 43(5–6):869–885. doi: 10.1007/s11056-012-9323-y CrossRefGoogle Scholar
  32. Matthews RW (2001) Modelling of energy and carbon budgets of wood fuel coppice systems. Biomass Bioenergy 21:1–19. doi: 10.1016/S0961-9534(01)00016-2 CrossRefGoogle Scholar
  33. McIlveen-Wright DR, Williams BC, McMullan JT (2001) A re-appraisal of wood-fired combustion. Biores Technol 76:183–190. doi: 10.1016/S0960-8524(00)00129-2 CrossRefGoogle Scholar
  34. Miyata E. (1980). Determining fixed and operating costs of logging equipment. General Technical Report NC-55. St. Paul, MN: USDA FS North Central Forest Experiment Station. p. 14Google Scholar
  35. Nati C, Spinelli R, Fabbri G (2010) Wood chips size distribution in relation to blade wear and screen use. Biomass Bioenergy 34:583–587CrossRefGoogle Scholar
  36. Nati C, Eliasson L, Spinelli R (2014) Effect of chipper type, biomass type and blade wear on productivity, fuel consumption and product quality. Croat J For Eng 35(1):1–7.
  37. Pezzi G, Maresi G, Conedera M, Ferrari C (2011) Woody species composition of chestnut stands in the Northern Apennines: the result of 200 years of changes in land use. Landsc Ecol 26(10):1463–1476. doi: 10.1007/s10980-011-9661-8 CrossRefGoogle Scholar
  38. Picchio R, Maesano M, Savelli S, Marchi E (2009) Productivity and energy balance in conversion of a Quercus cerris L. coppice stand into high forest in Central Italy. Croat J For Eng 30(1):15–26.
  39. Recchia L, Daou M, Rimediotti M, Cini E, Vieri M (2009) New shredding machine for recycling pruning residuals. Biomass Bioenergy 33:149–154. doi: 10.1016/j.biombioe.2008.05.003 CrossRefGoogle Scholar
  40. Ryder C M, Moore G M (2013). The arboricultural and economic benefits of formative pruning street trees. Arbor Urb For 39(1):17-24
  41. Sandu AM (2014) Coordinates of the new EU rural development policy. Quality – Access to Success 1:463–465Google Scholar
  42. Savelli S, Cavalli R, Baldini S, Picchio R (2010) Small scale mechanization of thinning in artificial coniferous plantation. Croat J For Eng 31(1):11–21.
  43. Siegel S, Castellan NJ (1988) Nonparametric statistics for the behavioral sciences. Mc Graw-Hill, ISBN 10: 0070573573 ISBN13:9780070573574Google Scholar
  44. Spinelli R, Nati C (2009) A low-investment fully mechanized operation for pure selection thinning of pine plantations. Croat J For Eng 30(2):89–97.
  45. Spinelli R, Picchi G (2010) Industrial harvesting of olive tree pruning residue for energy biomass. Biores Technol 101:730–735. doi: 10.1016/j.biortech.2009.08.039 CrossRefGoogle Scholar
  46. Spinelli R, Viesser RJM (2009) Analyzing and estimating delays in wood chipping operations. Biomass Bioenergy 33:429–433. doi: 10.1016/j.biombioe.2008.08.003 CrossRefGoogle Scholar
  47. Spinelli R, Magagnotti N, Nati C (2010) Harvesting vineyard pruning residues for energy use. Biosyst Eng 105:316–322. doi: 10.1016/j.biosystemseng.2009.11.011 CrossRefGoogle Scholar
  48. Spinelli R, Magagnotti N, Nati C, Cantini C, Sani G, Picchi G, Biocca M (2011a) Integrating olive grove maintenance and energy biomass recovery with a single-pass pruning and harvesting machine. Biomass Bioenergy 35:808–813. doi: 10.1016/j.biombioe.2010.11.015 CrossRefGoogle Scholar
  49. Spinelli R, Magagnotti N, Paletto G, Preti C (2011b) Determining the impact of some wood characteristics on the performance of a mobile chipper. Silva Fennica 45(1):85–95CrossRefGoogle Scholar
  50. Spinelli R, Nati C, Pari L, Mescalchin E, Magagnotti N (2012) Production and quality of biomass fuels from mechanized collection and processing of vineyard pruning residues. Appl Eng 89:374–379. doi: 10.1016/j.apenergy.2011.07.049 CrossRefGoogle Scholar
  51. Spinelli R, Lombardini C, Pari L, Sadauskiene L (2014) An alternative to field burning of pruning residues in mountain vineyards. Ecol Eng 70:212–216. doi: 10.1016/j.ecoleng.2014.05.023 CrossRefGoogle Scholar
  52. Telmo C, Lousada J (2011) Heating values of wood pellets from different species. Biomass Bioenergy 35:2634–2639. doi: 10.1016/j.biombioe.2011.02.043 CrossRefGoogle Scholar
  53. Velázquez-Martí B, Fernández-González E, López-Cortés I, Salazar-Hernández DM (2011) Quantification of the residual biomass obtained from pruning of trees in Mediterranean almond groves. Reniew Energy 36:621–626. doi: 10.1016/j.renene.2010.08.008 CrossRefGoogle Scholar
  54. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer-Verlag, New York, p 498. doi: 10.1007/978-0-387-21706-2 CrossRefGoogle Scholar
  55. Volpi R (1992) Indagine sui bilanci energetici delle aziende agrarie in Italia [Survey on energetic balance in Italian farms] in Italian. Contained in “Energetic balance in agriculture”. Ed. Laruffa, Reggio Calabria p. 198Google Scholar
  56. Vusić D, Šušnjar M, Marchi E, Spina R, Zečić Z, Picchio R (2013) Skidding operations in thinning and shelterwood cut of mixed stands work productivity, energy inputs and emissions. Ecol Eng 61:216–223. doi: 10.1016/j.ecoleng.2013.09.052 CrossRefGoogle Scholar
  57. Waring KM, O’Hara KL (2005).Ten-year growth and epicormic sprouting response of western larch to pruning in Western Montana. West J Appl For 20(4):228–232.
  58. Zerger A, Gibbons P, Seddon J, Briggs S, Freudenberger D (2009) A method for predicting native vegetation condition at regional scales. Landsc Urban Plan 91:65–77. doi: 10.1016/j.landurbplan.2008.11.011 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.CNR IVALSASesto FiorentinoItaly
  2. 2.PesciaItaly
  3. 3.CNR IFACSesto FiorentinoItaly

Personalised recommendations