Agroforestry Systems

, Volume 90, Issue 1, pp 35–44 | Cite as

Using the high conservation value forest concept and Pareto optimization to identify areas maximizing biodiversity and ecosystem services in cork oak landscapes

  • M. N. BugalhoEmail author
  • F. S. Dias
  • B. Briñas
  • J. O. Cerdeira


Montados are silvo-pastoral systems, typical of the western Mediterranean Basin. When well managed, these ecosystems provide relevant ecosystem services and biodiversity conservation. In the northern part of the Mediterranean Basin, cork oak areas are mainly privately owned and a source of income to landowners, chiefly through cork and livestock production. Sustainable use is essential to maintain the ecological sustainability and socio-economic viability of these ecosystems. Biodiversity conservation and non-provisioning ecosystem services may generate additional incentives promoting sustainable use and conservation of montados, but require adequate mapping and identification. The high conservation value forest (HCVF) framework allows systematic inventory of biodiversity and non-provisioning ecosystem services and is widely applied in forest ecosystems. Here we exemplify the application of HCVF to the cork oak landscape of southern Portugal using a WebGIS tool that integrates the HCVF framework, in conjunction with Pareto optimization, to identify areas important for the conservation of biodiversity and ecosystem services. We present a case study using threatened bird and reptile species, as examples of biodiversity attributes, and carbon storage and water recharge rate of aquifers, as examples of ecosystem services attributes. We identify those areas in a cork oak landscape of southern Portugal where biodiversity and ecosystem services attributes are optimized. These areas can be prioritized for implementing conservation mechanisms, such as payment for ecosystem services, to promote sustainable forest management.


Silvo-pastoral systems montados dehesas Forest management Biodiversity Ecosystem services Pareto optimization 



We are grateful to Teresa Pinto Correia and Maria Isabel Ferraz de Oliveira for their invitation to participate in the ICAMM 2013 International Conference “Acknowledging montados and dehesas as High Nature Value Farming Systems” under which this paper was developed. We thank Manuel de Oliveira from LNEC and Ana Lopes from APA for providing the information on aquifer recharge rates. We also thank M.C. Caldeira, V. Acácio and three anonymous referees, which greatly improved a previous version of the manuscript. The Portuguese Science Foundation funded MNB (Program Ciência 2007, grant SFRH/BPD/90668/2012 and FCT IF/01171/2014 contract), FSD (grant SFRH/BD/69021/2010) and JOC (project UID/MAT/00297/2013. Funding to BB was provided by the International Master on Mediterranean Forests (MedFOR), School of Agriculture, University of Lisbon.


  1. Acacio V, Holmgren M, Jansen PA, Schrotter O (2007) Multiple recruitment limitation causes arrested succession in Mediterranean cork oak systems. Ecosystems 10:1220–1230CrossRefGoogle Scholar
  2. Agência Portuguesa do Ambiente (2012) Plano de Gestão da Região Hidrográfica do Tejo, Relatório técnico, Versão Extensa Parte 2—Caracterização e Diagnóstico da Região Hidrográfica. Agência Portuguesa do Ambiente, LisboaGoogle Scholar
  3. Arbainsyah, de Iongh HH, Kustiawan W, de Snoo GR (2014) Structure, composition and diversity of plant communities in FSC-certified, selectively logged forests of different ages compared to primary rain forest. Biodivers Conserv 23:2445–2472CrossRefGoogle Scholar
  4. Aronson J, Pereira JS, Pausas JG (2009) Introduction. In: Aronson J, Pereira JS, Pausas JG (eds) Cork oak woodlands on the edge. Island Press, Washington, DC, pp 1–6Google Scholar
  5. Auld G, Gulbrandsen LH, McDermott CL (2008) Certification schemes and the impacts on forests and forestry. Annu Rev Environ Resour 33:187–211CrossRefGoogle Scholar
  6. Autoridade Florestal Nacional (2010) Final report of the 5th national forest inventory. Autoridade Florestal Nacional, LisboaGoogle Scholar
  7. Berrahmouni N, Regato P, Ellatifi M et al (2009) Ecoregional planning for biodiversity conservation. In: Aronson J, Pereira JS, Pausas JG (eds) Cork oak woodlands on the edge. Island Press, Washington, DC, pp 203–218Google Scholar
  8. Bignal EM, McCracken DI (1996) Low-intensity farming systems in the conservation of the countryside. J Appl Ecol 33:413–424CrossRefGoogle Scholar
  9. Branco O, Bugalho MN, Silva LN, Bareira R, Vaz P, Silva-Dias, F (2010) Hotspot areas for biodiversity and conservation in Montados. Technical Report. WWF Mediterranean Program in Portugal. LisbonGoogle Scholar
  10. Bugalho MN, Silva LN (2014) Promoting sustainable management of cork oak landscapes through payments for ecosystem services: the WWF Green Heart of Cork project. Unasylva FAO 242:29–30Google Scholar
  11. Bugalho MN, Plieninger T, Aronson J et al (2009) Open woodlands: a diversity of uses (and overuses). In: Aronson J, Pereira JS, Pausas JG (eds) Cork oak woodlands on the edge. Island Press, Washington, DC, pp 33–48Google Scholar
  12. Bugalho MN, Caldeira MC, Pereira JS, Aronson JA, Pausas J (2011a) Mediterranean oak savannas require human use to sustain biodiversity and ecosystem services. Front Ecol Environ 5:278–286CrossRefGoogle Scholar
  13. Bugalho MN, Lecomte X, Caldeira MC, Branco MR (2011b) Establishing grazing and grazing-excluded patches increases plant and invertebrate diversity in a Mediterranean oak woodland. For Ecol Manag 261:2133–2139CrossRefGoogle Scholar
  14. Cabral MJ, Almeida J, Almeida PR et al (eds) (2005) Livro Vermelho dos Vertebrados de Portugal. Instituto da Conservação da Natureza, LisboaGoogle Scholar
  15. Caldeira MC, Ibáñez I, Nogueira C, Bugalho MN, Lecomte X, Moreira A, Pereira JS (2014) Direct and indirect effects of tree canopy facilitation in the recruitment of Mediterranean oaks. J Appl Ecol 55:349–358CrossRefGoogle Scholar
  16. Caparrós A, Huntsinger L, Oviedo JL, Plieninger T, Campos P (2014) Economics of Ecosystem Services. In: Campos P, Huntsinger L, Oviedo JL, Starrs PF, Díaz M, Standiford RB, Montero G (eds) Mediterranean oak woodland working landscapes: dehesas of Spain and ranchlands of California. Springer, Dordrecht, pp 353–388Google Scholar
  17. Ciais P, Schulze ED, Bouriaud O, Freibauer A, Valentini R, Nabuurs GJ (2008) Carbon accumulation in European forests. Nat Geosci 1:425–429CrossRefGoogle Scholar
  18. Dias FS, Bugalho MN, Cerdeira JO, Martins MJ (2013) Is forest certification targeting areas of high biodiversity in cork oak savannas? Biodivers Conserv 22:93–112CrossRefGoogle Scholar
  19. Dias FS, Bugalho MN, Rodriguez-Gonzalez PM, Albuquerque A, Cerdeira JO (2014) Effects of forest certification on the ecological condition of Mediterranean streams. J Appl Ecol. doi: 10.1111/1365-2664.12358 Google Scholar
  20. Diaz M, Campos P, Pulido FG (1997) The Spanish dehesas: a diversity of land uses and wildlife. In: Pain D, Penkowski M (eds) Farming and birds in Europe: the common agricultural policy and its implications for bird conservation. Academic Press, London, pp 178–209Google Scholar
  21. Díaz-Villa MD, Maranon T, Arroyo J, Garrido B (2003) Soil seed bank and floristic diversity in a forest-grassland mosaic in southern Spain. J Veg Sci 14:701–709CrossRefGoogle Scholar
  22. Edwards DP, Laurance SG (2012) Green labelling, sustainability and the expansion of tropical agriculture: critical issues for certification schemes. Biol Conserv 151:60–64CrossRefGoogle Scholar
  23. Edwards DP, Fisher B, Wilcove DS (2012) High conservation value or high confusion value? Sustainable agriculture and biodiversity conservation in the tropics. Conserv Lett 5:20–27CrossRefGoogle Scholar
  24. EEA (2004) High nature value farmland: characteristics, trends and policy challenges. European Agency for the Environment. Technical Report no 1. CopenhenagenGoogle Scholar
  25. Eldridge DJ, Bowker MA, Maestre FT, Roger E, Reynolds JF, Whitford WG (2011) Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecol Lett 14:709–722PubMedCentralCrossRefPubMedGoogle Scholar
  26. Engel S, Pagiola S, Wunder S (2008) Designing payments for environmental services in theory and practice: an overview of the issues. Ecol Econ 65:663–674CrossRefGoogle Scholar
  27. Equipa Atlas (2008) Atlas das Aves Nidificantes em Portugal (1999–2005). Instituto da Conservação da Natureza, Sociedade Portuguesa para o Estudo das Aves, Parque Natural da Madeira e Secretaria Regional do Ambiente e do Mar. Assírio & Alvim, LisboaGoogle Scholar
  28. FAO (2006) Global forest resources assessment 2005: progress towards sustainable forest management. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  29. Ferraz de Oliveira MI, Lamy E, Bugalho MN et al (2013) Assessing foraging strategies of herbivores in Mediterranean oak woodlands: a review of key issues and selected methodologies. Agrofor Syst 87:1421–1437CrossRefGoogle Scholar
  30. Joffre R, Rambal S, Ratte JP (1999) The dehesa system of southern Spain and Portugal as a natural ecosystem mimic. Agroforest Syst 45:57–79CrossRefGoogle Scholar
  31. Kennedy MC, Ford ED, Singleton P et al (2007) Informed multi-objective decision-making in environmental management using Pareto optimality: multi-objective optimization. J Appl Ecol 45:181–192CrossRefGoogle Scholar
  32. Kleijn D, Kohler F, Báldi A et al (2009) On the relationship between farmland biodiversity and land-use intensity in Europe. Proc R Soc Lond B Biol Sci 276:903–909CrossRefGoogle Scholar
  33. Larsen FW, Bladt J, Balmford A, Rahbek C (2012) Birds as biodiversity surrogates: will supplementing birds with other taxa improve effectiveness? J Appl Ecol 49:349–356CrossRefGoogle Scholar
  34. Lobo Ferreira JPC, Moinante MJ, Oliveira MM, et al (1999) Plano de Bacia Hidrográfica do Rio Sado. 1a Fase. Caracterização dos Recursos Hídricos Subterrâneos da Área Abrangida pelo Plano de Bacia Hidrográfica do Rio Sado. Anexo Temático 4—Recursos Hídricos Subterrâneos. Estudo realizado para a Hidroprojecto, Engenharia e Gestão, S.AGoogle Scholar
  35. Loureiro A, Ferrand de Almeida N, Carretero MA, Paulo OS (2008) Atlas dos Anfíbios e Répteis de Portugal. Instituto da Conservação da Natureza, LisboaGoogle Scholar
  36. Medjibe V, Putz FE, Romero C (2013) Certified and uncertified logging concessions compared in gabon: changes in stand structure, tree species, and biomass. Environ Manag 51:524–540CrossRefGoogle Scholar
  37. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being. Synthesis Island Press, Washington, DCGoogle Scholar
  38. Oliveira MM, Oliveira L, Lobo Ferreira JP (2008) Estimativa da recarga natural no sistema aquífero de Querença-Silves (Algarve) pela aplicação do modelo Balseq_MOD. XIX Congresso da Água, Centro de Congressos de Cascais, Cascais, PortugalGoogle Scholar
  39. Palma JHN, Paulo J, Tomé M (2014) Carbon sequestration of modern Quercus suber L. silvo-arable agroforestry systems in Portugal: a YieldSAFE-based estimation. Agrofor Syst 88:791–801CrossRefGoogle Scholar
  40. Paracchini ML, Petersen JE, Hoogeveen Y, Bamps C, Burfield I, van Swaay C (2008) High nature value farmland in Europe—an estimate of the distribution patterns on the basis of land cover and biodiversity data, Report EUR 23480 EN, pp 87Google Scholar
  41. Pardalos PM, Migdalas A, Pitsoulis L (eds) (2008) Pareto optimality, game theory and equilibria, 2008th edn. Springer, New YorkGoogle Scholar
  42. Pinto-Correia T, Carvalho Ribeiro SM (2012) High nature value farming in Portugal. In: Oppermann R, Beaufoy G, Jones G (eds) High nature value farmland in Europe. Verlag Regionalkultur, Heidelberg, pp 336–345Google Scholar
  43. Plieninger T, Pulido FJ, Konold W (2003) Effects of land-use history on size structure of holm oak stands in Spanish dehesas: implications for conservation and restoration. Environ Conserv 30:61–70CrossRefGoogle Scholar
  44. Pointereau P, Paracchini ML, Terres JM, Jiguet F, Bas Y, Biala K (2007) Identification of high nature value farmland in France through statistical information and farm practice surveys. Technical Report Institute for Environment and Sustainability, Joint Research Centre, European Commission, LuxemburgGoogle Scholar
  45. Porto M, Correia O, Beja P (2014) Optimization of landscape services under uncoordinated management by multiple landowners. PLoS One. doi: 10.1371/journal.pone.0086001 Google Scholar
  46. Pulido FJ, Díaz M, Hidalgo SJ (2001) Size-structure and regeneration of Spanish holm oak Quercus ilex forests and dehesas: effects of agroforestry use on their long-term sustainability. For Ecol Mana 146:1–13CrossRefGoogle Scholar
  47. QGIS Development Team (2014) QGIS Geographic Information System. Open Source Geospatial Foundation ProjectGoogle Scholar
  48. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  49. Rey-Benayas JM, Bullock JM, Newton AC (2008) Creating woodland islets to reconcile ecological restoration, conservation and agricultural land use. Front Ecol Environ 6:329–336CrossRefGoogle Scholar
  50. Ribeiro PF, Santos JL, Bugalho MN, Santana J, Reino L, Beja P, Moreira F (2014) Modelling farming system dynamics in high nature value farmland under policy change. Agric Ecosyst Environ 183:138–144CrossRefGoogle Scholar
  51. Rivest D, Rolo V, López-Díaz Moreno G (2011) Shrub encroachment in Mediterranean silvopastoral systems: retama sphaerocarpa and Cistus ladanifer induce contrasting effects on pasture and Quercus ilex production. Agric Ecosyst Environ 141:447–454CrossRefGoogle Scholar
  52. Rolo V, Plieninger T, Moreno G (2013) Facilitation of holm oak recruitment through two contrasted shrubs species in Mediterranean grazed woodlands: patterns and processes. J Veg Sci 24:344–355CrossRefGoogle Scholar
  53. Rooks P (2014) rPref, R package version 0.3.
  54. Santana J, Porto M, Gordinho L, Reino L, Beja P (2012) Long-term responses of Mediterranean birds to forest fuel management. J Appl Ecol 49:632–643Google Scholar
  55. Sarkar S, Montoya M (2011) Beyond parks and reserves: the ethics and politics of conservation with a case study from Perú. Biol Conserv 144:979–988CrossRefGoogle Scholar
  56. Senior MJM, Brown E, Villalpando P, Hill JK (2014) Increasing the scientific evidence base in the “high conservation value” (HCV) approach for biodiversity conservation in managed tropical landscapes. Conserv Lett. doi: 10.1111/conl.12148 Google Scholar
  57. Wunder S (2005) Payments for environmental services: some nuts and bolts. CIFOR Technical Report. CIFOR, Jakarta, IndonesiaGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • M. N. Bugalho
    • 1
    • 2
    Email author
  • F. S. Dias
    • 1
    • 2
  • B. Briñas
    • 3
  • J. O. Cerdeira
    • 4
  1. 1.Center for Applied Ecology “Prof. Baeta Neves”, School of AgricultureUniversity of LisbonLisbonPortugal
  2. 2.World Wide Fund for Nature (WWF) Mediterranean ProgramRomeItaly
  3. 3.International Master on Mediterranean Forests, MedFor, School of AgricultureUniversity of LisbonLisbonPortugal
  4. 4.Department of Mathematics and Center for Mathematics and Applications, Faculty of Sciences and TechnologyNew University of LisbonCaparicaPortugal

Personalised recommendations