Agroforestry Systems

, Volume 89, Issue 1, pp 81–93 | Cite as

Effect of ramial wood amendment on sorghum production and topsoil quality in a Sudano-Sahelian ecosystem (central Burkina Faso)

  • Bernard G. Barthès
  • Aurélien Penche
  • Edmond Hien
  • Philippe Deleporte
  • Cathy Clermont-Dauphin
  • Laurent Cournac
  • Raphaël J. Manlay


In Sudano-Sahelian agriculture, organic amendments are often limited by resource availability. Small branches (ramial wood, RW) represent an organic resource found in many landscapes but little is known about their effects. This field trial (2007–2009) studied the effects of RW or straw at low application rate (0.69 Mg C ha−1 year−1) on topsoil carbon (C), nitrogen (N) and available phosphorus (P, Pav), termite cast abundance, and sorghum yield. Straw and RW were chopped and either buried (StBu, WoBu) or mulched (StMu, WoMu). Mineral fertilizers were added to straw so that RW- and straw-amended plots received similar applications of C, N, P, and potassium. Another treatment had RW buried with additional N (WoBuN), and there was a control (Ctrl). Branches came from Piliostigma reticulatum, very common in the area. The treatments had little significant effect on topsoil and crop, owing to the low application rate and spatial variability. However, Pav was significantly lower with buried than mulched amendments in 2009, and decreased significantly over time in Ctrl and with buried amendments. Topsoil C also decreased significantly with time in WoMu. Significantly more termite casts were observed with RW. The sorghum yield averaged 0.87 Mg DM ha−1 in 2007 and then decreased. The treatments affected yield significantly in 2008 only: it was higher in WoBuN and StBu than in Ctrl. In 2009, the yield was mainly affected by initial topsoil Pav. These results suggest that RW stimulated biological activity, leading to P immobilization and C mineralization, but had little effect on yields.


Organic amendments Branches Soil carbon Soil phosphorus Termites Tropical dry Africa 



Control treatment (no inputs)


Available phosphorus


Ramial wood (small branches)


Treatment with buried straw


Treatment with straw mulch


Treatment with buried ramial wood


Treatment with buried ramial wood and additional mineral nitrogen


Treatment with ramial wood mulch



This work was supported by the joint research unit UMR Eco&Sols (Ecologie fonctionnelle & biogéochimie des sols & des agro-écosystèmes, i.e. Functional ecology & biogeochemistry of soils & agroecosystems; Montpellier SupAgro – Cirad – Inra – IRD), by AgroParisTech, and by the University of Ouagadougou. It was also supported by the Wassa project (Woody amendments for Soudano-Sahelian agriculture) funded by the FP7 – Era ARD (Seventh framework program for research, European research area, Agricultural research for development). We should also like to thank the two anonymous reviewers and Tony Tebby for English correction.


  1. Altieri MA (2002) Agroecology: the science of natural resource management for poor farmers in marginal environments. Agr Ecosyst Environ 93:1–24CrossRefGoogle Scholar
  2. Aman SA (1996) Effects of chopped twig wood on maize growth and yields in the forest-savanna transition zone of Côte d’Ivoire. Publication n°169, Groupe de Coordination sur les Bois Raméaux, Université Laval, QuébecGoogle Scholar
  3. Arbonnier M (2002) Arbres, arbustes et lianes des zones sèches d’Afrique de l’Ouest, 2nd edn. CIRAD-MNHN, ParisGoogle Scholar
  4. Barthès BG, Kouakoua E, Larré-Larrouy MC, Razafimbelo TM, De Luca EF, Azontonde A, Neves CSVJ, de Freitas PL, Feller CL (2008) Texture and sesquioxide effects on water-stable aggregates and organic matter in some tropical soils. Geoderma 143:14–25CrossRefGoogle Scholar
  5. Barthès BG, Manlay RJ, Porte O (2010) Effets de l’apport de bois raméal sur la plante et le sol : une revue des résultats expérimentaux. Cah Agric 19:280–287 (in French; abstract and table and figure captions in English)Google Scholar
  6. Beauchemin S, N’dayegamiye A, Laverdière MR (1990) Effets d’apport d’amendements ligneux frais et humifiés sur la production de pomme de terre et sur la disponibilité de l’azote en sol sableux. Can J Soil Sci 70:555–564CrossRefGoogle Scholar
  7. Beauchemin S, N’dayegamiye A, Laverdière MR (1992) Effets d’amendements ligneux sur la disponibilité d’azote dans un sol sableux cultivé en pommes de terre. Can J Soil Sci 72:89–95CrossRefGoogle Scholar
  8. CIRAD (Centre de coopération internationale en recherche agronomique pour le développement) (1999) Ecosystèmes cultivés : l’approche agro-écologique. Agriculture et Développement 21:3–109 (in French, with English abstract)Google Scholar
  9. Davies RG, Eggleton P, Dibog L, Lawton JH, Bignell DE, Brauman A, Hartmann C, Nunes L, Holt J, Rouland C (1999) Successional response of a tropical forest termite assemblage to experimental habitat perturbation. J Appl Ecol 36:946–962CrossRefGoogle Scholar
  10. De Vries FT, Liiri ME, Bjørnlund L, Bowker MA, Christensen S, Setälä HM, Bardgett RD (2012) Land use alters the resistance and resilience of soil food webs to drought. Nat Clim Change 2:276–280CrossRefGoogle Scholar
  11. Doré T, Clermont-Dauphin C, Crozat Y, David C, Jeuffroy MH, Loyce C, Makowski D, Malézieux E, Meynard JM, Morison M (2008) Methodological progress in regional agronomic diagnosis. Agron Sustain Dev 28:151–161CrossRefGoogle Scholar
  12. Ewel JJ (1999) Natural systems as models for the design of sustainable systems of land use. Agroforest Syst 45:1–21CrossRefGoogle Scholar
  13. Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843CrossRefGoogle Scholar
  14. Gasser MO, N’dayegamiye A, Laverdière MR (1995) Short-term effects of crop rotations and wood-residue amendments on potato yields and soil properties of a sandy loam soil. Can J Soil Sci 75:385–390CrossRefGoogle Scholar
  15. Gómez CER (2003) Comparison of two sources of ramial chipped wood on maize (Zea mays) yield. Publication n°170, Groupe de Coordination sur les Bois Raméaux, Université Laval, QuébecGoogle Scholar
  16. Hien E, Kabore WT, Masse D, Dugue P (2010) Sustainable farming systems in the sub-Sahelian zone of Burkina Faso: key factors. Sustain Debate 1:127–140Google Scholar
  17. Hottin G, Ouedraogo OF (1992) Carte géologique du Burkina Faso, échelle l/l,000,000e. Bureau des Mines et de la Géologie du Burkina, Ouagadougou, Burkina Faso (in French)Google Scholar
  18. INERA (Institut de l’environnement et de recherches agricoles) (1995) Plan stratégique de la recherche scientifique : Gestion des ressources naturelles / systèmes de production. INERA, Ouagadougou, Burkina Faso (in French)Google Scholar
  19. IUSS Working Group WRB (International union of soil sciences, Working Group World reference base for soil resources) (2006) World reference base for soil resources. FAO, RomeGoogle Scholar
  20. Izac AMN, Swift MJ (1994) On agricultural sustainability and its measurement in small-scale farming in sub-Saharan Africa. Ecol Econ 11:105–125CrossRefGoogle Scholar
  21. Jackson W (2002) Natural systems agriculture: a truly radical alternative. Agr Ecosyst Environ 88:111–117CrossRefGoogle Scholar
  22. Kumar K, Goh KM (2000) Crop residues and management practices: effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. Adv Agron 68:197–319CrossRefGoogle Scholar
  23. Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498CrossRefGoogle Scholar
  24. Kwabiah AB, Stoskopf NC, Palm CA, Voroney RP, Rao MR, Gacheru E (2003) Phosphorus availability and maize response to organic and inorganic fertilizer inputs in a short term study in western Kenya. Agr Ecosyst Environ 95:49–59CrossRefGoogle Scholar
  25. Lal R (2001) Soil degradation by erosion. Land Degrad Dev 12:519–539CrossRefGoogle Scholar
  26. Lal R (2004) Agricultural activities and the global carbon cycle. Nutr Cycl Agroecosys 70:103–116CrossRefGoogle Scholar
  27. Lal R (2006) Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad Dev 17:197–209CrossRefGoogle Scholar
  28. Larochelle L (1994) L’impact du bois raméal fragmenté sur la dynamique de la mésofaune du sol. Publication n°78, Groupe de Coordination sur les Bois Raméaux, Université Laval, Québec (in French)Google Scholar
  29. Lemieux G (1996) Cet univers caché qui nous nourrit : le sol vivant. Publication n°59, Groupe de Coordination sur les Bois Raméaux, Université Laval, Québec (in French, with English abstract)Google Scholar
  30. Mando A (1997) Effect of termites and mulch on the physical rehabilitation of structurally crusted soils in the Sahel. Land Degrad Dev 8:269–278CrossRefGoogle Scholar
  31. Manlay RJ, Masse D, Chevallier T, Russell-Smith A, Friot D, Feller C (2004) Post-fallow decomposition of woody roots in the West African savanna. Plant Soil 260:123–136CrossRefGoogle Scholar
  32. Manlay RJ, Feller C, Swift MJ (2007) Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agr Ecosyst Environ 119:217–233CrossRefGoogle Scholar
  33. N’dayegamiye A, Dubé A (1986) L’effet de l’incorporation de matières ligneuses sur l’évolution des propriétés chimiques du sol et sur la croissance des plantes. Can J Soil Sci 66:623–631CrossRefGoogle Scholar
  34. Obiefuna JC (1991) Establishment of pineapple orchards and soil loss control systems for erodible tropical ultisols of southeastern Nigeria. Fruits 46:145–151Google Scholar
  35. Odum EP (1969) The strategy of ecosystem development. Science 164:262–270PubMedCrossRefGoogle Scholar
  36. Pansu M, Gautheyrou J (2006) Handbook of soil analysis: mineralogical, organic and inorganic methods. Springer, Heidelberg, GermanyCrossRefGoogle Scholar
  37. Perry DA, Amaranthus MP, Borchers JG, Borchers SL, Brainerd RE (1989) Bootstrapping in ecosystems. Bioscience 39:230–237CrossRefGoogle Scholar
  38. Rouland C, Lepage M, Chotte JL, Diouf M, Ndiaye D, Ndiaye S, Seuge C, Brauman A (2003) Experimental manipulation of termites (Isoptera, Macrotermitinae) foraging patterns in a Sahelo-Sudanese savanna: effect of litter quality. Insect Soc 50:309–316CrossRefGoogle Scholar
  39. Salau OA, Opara-Nadi OA, Swennen R (1992) Effects of mulching on soil properties, growth and yield of plantain on a tropical ultisol in southeastern Nigeria. Soil Till Res 23:73–93CrossRefGoogle Scholar
  40. Soumare MD, Mnkeni PNS, Khouma M (2002) Effects of Casuarina equisetifolia composted litter and ramial-wood chips on tomato growth and soil properties in Niayes, Senegal. Biol Agric Hortic 20:111–123CrossRefGoogle Scholar
  41. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677PubMedCrossRefGoogle Scholar
  42. Tremblay J, Beauchamp CJ (1998) Fractionnement de la fertilisation azotée d’appoint à la suite de l’incorporation au sol de bois raméaux fragmentés: modifications de certaines propriétés biologiques et chimiques d’un sol cultivé en pomme de terre. Can J Soil Sci 78:275–282CrossRefGoogle Scholar
  43. Wezel A, Böcker R (1999) Mulching with branches of an indigenous shrub (Guiera senegalensis) and yield of millet in semi-arid Niger. Soil Till Res 50:341–344CrossRefGoogle Scholar
  44. Yang RC, Juskiw P (2011) Analysis of covariance in agronomy and crop research. Can J Plant Sci 91:621–641CrossRefGoogle Scholar
  45. Yelemou B, Bationo BA, Yameogo G, Milogo-Rasolodimby J (2007) Gestion traditionnelle et usages de Piliostigma reticulatum sur le Plateau central du Burkina Faso. Bois et Forêts des Tropiques 291:55–66 (in French, with English abstract)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Bernard G. Barthès
    • 1
  • Aurélien Penche
    • 2
    • 3
  • Edmond Hien
    • 2
    • 4
  • Philippe Deleporte
    • 5
  • Cathy Clermont-Dauphin
    • 1
  • Laurent Cournac
    • 1
  • Raphaël J. Manlay
    • 6
  1. 1.IRDUMR Eco&SolsMontpellier Cedex 2France
  2. 2.IRDUMR Eco&SolsOuagadougou 01Burkina Faso
  3. 3.Société LecofruitTsaralalanaAntananarivoMadagascar
  4. 4.UFR Science de la Vie et de la TerreUniversité de OuagadougouOuagadougou 03Burkina Faso
  5. 5.CiradUMR Eco&SolsMontpellier Cedex 2France
  6. 6.AgroParisTechUMR Eco&SolsMontpellier Cedex 2France

Personalised recommendations