Agroforestry Systems

, Volume 88, Issue 5, pp 935–946 | Cite as

Restoring silvopastures with oak saplings: effects of mulch and diameter class on survival, growth, and annual leaf-nutrient patterns

  • M. N. JiménezEmail author
  • J. R. Pinto
  • M. A. Ripoll
  • A. Sánchez-Miranda
  • F. B. Navarro


In Southwestern Spain, multifunctional silvopastoral systems consisting of pastureland and open oak woodlands are known as Dehesas. These, and other similar systems of the Mediterranean basin, are currently threatened by increasing intensive land use. As a consequence, oak regeneration is declining and is in need of adequate management and active restoration. Traditional restoration practices outplant one-year-old, nursery-produced oak seedlings grown in 250–350 cm3 containers, but establishment and growth results are typically poor. This work examines holm oak (Quercus ilex L. subsp. ballota (Desf.) Samp.) grown in a non-conventional container size (24 l) and age (6–7 years) with three mulch treatments (control, stone, and straw). In an open Dehesa of SE Spain, 106 oak saplings were planted in March 2010, and survival, diameter at breast height (DBH), and leaf-nutrient concentrations were analyzed. Forty months after planting, all treatments showed high survival (81 %) but only straw-mulched saplings differed significantly (94 %) from control (74 %). DBH increased over time but showed no significant differences among mulch treatments. Saplings with high initial DBH showed the greatest growth and change in DBH at the end of the study period. Leaf-nutrient concentrations changed significantly in the year following outplanting. Bi-monthly foliar nutrient concentration data show decreases in P, K, Zn, and B and sharp increases in Ca and Fe. In this work, we provide some evidence concerning the viability of non-conventional oak size for restoring, regenerating, or building up new agroforestry or silvopastoral systems. A combination of saplings with more than 10 mm of DBH and straw mulch is recommended.


Quercus ilex subsp. ballota Saplings Dehesa Mulch Semi-arid DBH Spain 



We thank the Environmental Council (Junta de Andalucía) for financial support provided by Convenio de Colaboración no. 372 and the members of the Forest Management for Conservation research group (PAIDI AGR-245) from the IFAPA and EEZ-CSIC for their invaluable assistance. M.N. Jiménez and A. Sánchez-Miranda were sponsored by the Operating Programme of the European Social Found for Andalucía (2007–2013). We thank David Nesbitt and R. Kasten Dumroese for assistance with English revisions.

Supplementary material

10457_2014_9737_MOESM1_ESM.doc (8.8 mb)
Supplementary material 1 (DOC 9000 kb)


  1. Andivia E, Carevic F, Fernández M, Alejano R, Vázquez-Piqué J, Tapias R (2012) Seasonal evolution of water status after outplanting of two provenances of Holm oak nursery seedlings. New Forest 43:815–824CrossRefGoogle Scholar
  2. Bussotti F, Borghini F, Celesti C, Leonzio C, Bruschi P (2000) Leaf morphology and macronutrients in broadleaved trees in central Italy. Trees 14:361–368CrossRefGoogle Scholar
  3. Bussotti F, Borghini F, Celesti C, Leonzio C, Cozzi A, Bettini D, Ferretti M (2003) Leaf shedding, crown condition and element return in two mixed Holm oak forests in Tuscany, central Italy. For Ecol Manag 176:273–285CrossRefGoogle Scholar
  4. Camarero C, Campos J (1991) Guadix 1752 según las respuestas generales del catastro de Ensenada. Tabapress S.A, Madrid, p 206Google Scholar
  5. Ceacero CJ, Díaz-Hernández JL, Del Campo A, Navarro-Cerrillo RM (2012) Interactions between soil gravel content and neighboring vegetation control management in oak seedling establishment success in Mediterranean environments. For Ecol Manag 271:10–18CrossRefGoogle Scholar
  6. Chaar H, Mechergui T, Khouaja A, Abid H (2008) Effects of treeshelters and polyethylene mulch sheets on survival and growth of cork oak (Quercus suber L.) seedlings planted in northwestern Tunisia. For Ecol Manag 256:722–731CrossRefGoogle Scholar
  7. Chirino E, Vilagrosa A, Hernández EI, Matos A, Vallejo VR (2008) Effects of a deep container on morpho-functional characteristics and root colonization in Quercus suber L. seedlings for reforestation in Mediterranean climate. For Ecol Manag 256:779–785CrossRefGoogle Scholar
  8. Clemente S (2002) Viaje a Andalucía: Historia natural del reino de Granada (1804–1809). In: Edición y transcripción de A. Gil Albarracín. G.B.G. Editores, Barcelona, Spain, p 1247Google Scholar
  9. Eichhorn MP, Paris P, Herzog F, Incoll LD, Liagre F, Mantzanas K, Mayus M, Moreno G, Papanastasis VP, Pilbeam DJ, Pisanelli A, Dupraz C (2006) Silvoarable systems in Europe—past, present and future prospects. Agrofor Syst 67:29–50CrossRefGoogle Scholar
  10. Escudero A, Mediavilla S (2003) Decline in photosynthetic nitrogen use efficiency with leaf age and nitrogen resorption as determinants of leaf life span. J Ecol 91:880–889CrossRefGoogle Scholar
  11. Fernández M, Navarro-Cerrillo RM, del Campo AD (2011) Regeneración natural y reforestación. In: Alejano R, Domingo JM, Fernández M (eds) Manual para la gestión sostenible de las dehesas andaluzas. Foro para la Defensa y Conservación de la Dehesa “ENCINAL” y Universidad de Huelva. Huelva, pp 303–320Google Scholar
  12. Fuentes D, Valdecantos A, Cortina J, Vallejo VR (2007) Seedling performance in sewage sludge-amended degraded mediterranean woodlands. Ecol Eng 31:281–291CrossRefGoogle Scholar
  13. Fuentes D, Valdecantos A, Llovet J, Smanis A, Carnicer O, Bautista O (2009) Optimizing water and nutrient pulses in the establishment of seedlings in semiarid Mediterranean areas. In: EECA ecological engineering: from concepts to applications, Paris, 2–4 DecGoogle Scholar
  14. González-Rodríguez V, Navarro-Cerrillo RM, Villar R (2011) Artificial regeneration with Quercus ilex L. and Quercus suber L. by direct seeding and planting in southern Spain. Ann Forest Sci 68:637–646CrossRefGoogle Scholar
  15. Jiménez MN, Fernández-Ondoño E, Ripoll MA, Navarro FB, Gallego E, De Simón E, Lallena A (2007) Influence of different post-planting treatments on the development in Holm oak afforestation. Trees 21:443–455CrossRefGoogle Scholar
  16. Jiménez M.N, Fernández-Ondoño E, Ripoll MA, Castro J, Huntsinger L, Navarro FB (2013) Stones and organic mulches improve the Quercus ilex L. afforestation success under Mediterranean climatic conditions. Land Degrad Dev. doi:  10.1002/ldr.2250
  17. Katra I, Lavee H, Sarah P (2008) The effect of rock fragment size and position on topsoil moisture on arid and semi-arid hillslopes. Catena 72:49–55CrossRefGoogle Scholar
  18. König N, Kowalska A, Brunialti G, Ferretti M, Clarke N, Cools N, Derome J, Derome K, De Vos B, Fuerst A, Jakovljevič T, Marchetto A, Mosello R, O’Dea P, Tartari GA, Ulrich E (2010) Quality Assurance and Control in Laboratories. In: Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE, ICP Forests Programme Coordinating Centre, Hamburg, pp 53 []
  19. Larchevêque M, Ballini C, Korboulewsky N, Montés N (2006) The use of compost in afforestation of Mediterranean areas: effects on soil properties and young tree seedling. Sci Total Environ 369:220–230PubMedCrossRefGoogle Scholar
  20. López-Burgos MA (2000) Por las rutas de Baza. Relatos de viajes (1809–1867). Australis Publishers, Melbourne, p 86Google Scholar
  21. López-Serrano FR, De las Heras J, González-Ochoa AI, García-Morote FA (2005) Effects of silvicultural treatments and seasonal patterns on foliar nutrients in young post-fire Pinus halepensis forest stands. For Ecol Manag 210:321–336CrossRefGoogle Scholar
  22. Luyssaert S, Sulkana M, Raitio H, Hollmén J (2004) Evaluation of forest nutrition based on large-scale foliar surveys: are nutrition profiles the way of the future? J Environ Monit 6:160–167PubMedCrossRefGoogle Scholar
  23. Marschner H (1995) Adaptation of plants to adverse chemical soil conditions. In: Marschner H (ed) Mineral nutrition of higher plants. Academic, London, pp 596–680CrossRefGoogle Scholar
  24. Mediavilla S, González-Zurdo P, García-Ciudad A, Escudero A (2011) Morphological and chemical leaf composition of Mediterranean evergreen tree species according to leaf age. Trees 25:669–677CrossRefGoogle Scholar
  25. Moreno G, Obrador JJ (2007) Effects of trees and understory management on soil fertility and nutritional status of holm oaks in Spanish dehesas. Nutr Cycl Agroecosys 78(3):253–264CrossRefGoogle Scholar
  26. Moreno G, Pulido FJ (2008) The function, management and persistence of dehesas. In: Rigueiro A, Mosquera MR, McAdam J (eds) Agroforestry systems in Europe: current status and future prospects. Springer, Heidelberg, pp 127–160CrossRefGoogle Scholar
  27. Navarro-Cerrillo RM, Fragueiro B, Ceacero C, del Campo A, de Prado R (2005) Establishment of Quercus ilex L. subsp. ballota Desf. Samp. using different weed control strategies in Southern Spain. Ecol Eng 25:332–342CrossRefGoogle Scholar
  28. Oliet JA, Tejada M, Salifu KF, Collazos A, Jacobs DF (2009) Performance and nutrient dynamics of holm oak (Quercus ilex L.) seedlings in relation to nursery nutrient loading and post-transplant fertility. Eur J Forest Res 128:253–263CrossRefGoogle Scholar
  29. Oliet JA, Artero F, Cuadros S, Puértolas J, Luna L, Grau JM (2012) Deep planting with shelters improves performance of different stocktype sizes under arid Mediterranean conditions. New Forest 43:925–939CrossRefGoogle Scholar
  30. Oliveira G, Martins-Louςão MA, Correira O, Catarino F (1996) Nutrient dynamics in crown tissues of cork-oak (Quercus suber L.). Trees 10:247–254Google Scholar
  31. Orgeas J, Ourcival J, Bonin G (2002) Seasonal and spatial patterns of foliar nutrients in cork oak (Quercus suber L.) growing on siliceous soils in Provence (France). Plant Ecol 164:201–211CrossRefGoogle Scholar
  32. Pardos M, Royo A, Pardos JA (2005) Growth, nutrient, water relations, and gas exchange in a Holm oak plantation in response to irrigation and fertilization. New Forest 30:75–94CrossRefGoogle Scholar
  33. Pausas JG, Blade C, Valdecantos A, Seva JP, Fuentes D, Alloza JA, Vilagrosa A, Bautista S, Cortina J, Vallejo R (2004) Pines and oaks in the restoration of Mediterranean landscapes of Spain: new perspetives for an old practice—a review. Plant Ecol 171:209–220CrossRefGoogle Scholar
  34. Pemán JP, Voltas J, Gil-Pelegrin E (2006) Morphological and functional variability in the root system of Quercus ilex L. subjet to confinement: consequences for afforestation. Ann Forest Sci 63:425–430CrossRefGoogle Scholar
  35. Pinto JR, Marshall JD, Dumroese RK, Davis AS, Cobos DR (2012) Photosynthetic response, carbon isotopic composition, survival, and growth of three stock types under water stress enhanced by vegetative competition. Can J For Res 42:333–344CrossRefGoogle Scholar
  36. Plieninger T, Wilbrand C (2001) Land use, biodiversity conservation, and rural development in the dehesas of Cuatro Lugares, Spain. Agroforest Syst 51:23–34CrossRefGoogle Scholar
  37. Plieninger T, Schaich H, Kizos T (2011) Land-use legacies in the forest structure of silvospastoral oak woodlands in the Eastern Mediterranean. Reg Environ Change 11:603–615CrossRefGoogle Scholar
  38. Pulido FJ (2009) Creation of Dehesas: A History. In: Mosquera-Losada MR, Rigueiro-Rodríguez A (eds) Agroforestry systems as a technique for sustainable land management. AECID (Ministerio de Asuntos Exteriores y Cooperación), Lugo, Spain, pp 163–169Google Scholar
  39. Rautio P, Fürst A, Stefan K, Raitio H, Bartels U (2010) Sampling and analysis of needles and leaves, manual part XII. In: Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, UNECE, ICP Forests Programme Co-ordinating Centre, Hamburg. ISBN: 978-3-926301-03-1. []
  40. Sabaté S, Sala A, Gracia CA (1995) Nutrient content in Quercus ilex canopies: seasonal and spatial variation within a catchment. Plant Soil 168–169:297–304CrossRefGoogle Scholar
  41. Samyn J, De Vos B (2002) The assessment of mulch sheets to inhibit competitive vegetation in tree plantations in urban and natural environment. Urban Forest Urban Green 1:25–37CrossRefGoogle Scholar
  42. Santa Regina I (2000) Biomass estimation and nutrient pools in four Quercus pyrenaica in Sierra de Gata Mountains, Salamanca, Spain. For Ecol Manag 132:127–141CrossRefGoogle Scholar
  43. Sardans J, Peñuelas J, Ogaya R (2008) Experimental drought reduced acid and alkaline phosphatase activity and increased organic extractable P in soil in a Quercus ilex Mediterranean forest. Eur J Soil Biol 44:509–520CrossRefGoogle Scholar
  44. Sardans J, Rivas-Ubach A, Peñuelas J (2011) Factors affecting nutrient concentration and stoichiometry of forest tres in Catalonia. For Ecol Manag 262:2024–2034CrossRefGoogle Scholar
  45. Silla F, Escudero A (2003) Uptake, demand and internal cycling of nitrogen in saplings of Mediterranean Quercus species. Oecologia 136:28–36PubMedCrossRefGoogle Scholar
  46. Stefan K, Fürst A, Hacker R, Bartels U (1997) Forest foliar condition in Europe: Results of large-scale foliar chemistry surveys 1995. EC, UN/ECE 207 ppGoogle Scholar
  47. Tsakaldimi M, Zagas T, Tsitsoni T, Ganatsas P (2005) Root morphology, stem growth and field performance of seedlings of two Mediterranean evergreen oak species raised in different container types. Plant Soil 278:85–93CrossRefGoogle Scholar
  48. Valdecantos A, Cortina J, Vallejo R (2006) Nutrient status and field performance of tree seedlings planted in Mediterranean degraded areas. Ann Forest Sci 63:249–256CrossRefGoogle Scholar
  49. Valdecantos A, Baeza MJ, Vallejo VR (2009) Vegetation management for promoting ecosystem resilience in fire-prone Mediterranean Shrublands. Restor Ecol 17:414–421CrossRefGoogle Scholar
  50. Valdecantos A, Cortina J, Vallejo R (2011) Differential field response of two Mediterranean tree species to inputs of sewage sludge at the seedling stage. Ecol Eng 37:1350–1359CrossRefGoogle Scholar
  51. Villar-Salvador P, Planelles R, Enríquez E, Peñuelas Rubira J (2004) Nursery cultivation regimes, plant functional attributes, and field performance relationships in the Mediterranean oak Quercus ilex L. For Ecol Manag 196:257–266CrossRefGoogle Scholar
  52. Villar-Salvador P, Puértolas J, Cuesta B, Uscola M, Heredia N, Peñuelas JL, Rey-Benayas JM (2012) A physiological conceptual model for explaining the superior out-planting performance of large and rich nutrient seedlings in Mediterranean environments. New Forest. doi: 10.1007/s11056-012-9328-6 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • M. N. Jiménez
    • 1
    Email author
  • J. R. Pinto
    • 2
  • M. A. Ripoll
    • 1
  • A. Sánchez-Miranda
    • 1
  • F. B. Navarro
    • 1
  1. 1.AGROECOSOST Research GroupInstitute of Agricultural Research and Training (IFAPA Centro Camino de Purchil, Junta de Andalucía)GranadaSpain
  2. 2.USDA Forest Service Rocky Mountain Research StationMoscowUSA

Personalised recommendations