Agroforestry Systems

, Volume 88, Issue 5, pp 791–801 | Cite as

Carbon sequestration of modern Quercus suber L. silvoarable agroforestry systems in Portugal: a YieldSAFE-based estimation

  • J. H. N. PalmaEmail author
  • J. A. Paulo
  • M. Tomé


Modern alley cropping designs, with trees aligned in rows and adapted to operating farming machinery, have been suggested for Europe. This paper explores the potential for adoption of cork oak (Quercus suber L.) agroforestry in Portugal and estimates the potential carbon sequestration. Spatial modeling and Portuguese datasets were used to estimate target areas where cork oak could grow on farmland. Different implementation scenarios were then modeled for this area assuming a modern silvoarable agroforestry system (113 trees ha−1 thinned at year 20 for establishing 50 trees ha−1). The YieldSAFE process-based model was used to predict the biomass and carbon yield of cork oak under low and high soil water holding capacity levels. Approximately 353,000 ha are available in Portugal for new cork oak alley cropping. Assuming implementation rates between 10 % of the area with low soil water capacity (60 mm: 15 cm depth, coarse texture) and 70 % of the area with high soil water holding capacity (1,228 mm: 200 cm depth, very fine texture), then carbon sequestration could be 5 × 106 and 123 × 106 Mg CO2 respectively. Due to higher yields on more productive land, scenarios of limited implementation in high productivity locations can sequester similar amounts of carbon as wide implementation on low productivity land, suggesting that a priori land classification assessments can improve the targeting of land and financial incentives for carbon sequestration.


Land use change Agricultural land Montado Dehesa Alley cropping Modeling 



This study was funded under the Portuguese National Science Foundation (FCT) under the contract SFRH/BPD/26346/2006, the FCT scientific funding program “Programa Ciência 2008”, the FCT projects (a) Cork Carbon Footprint (PTDC/AGR-FOR/4360/2012) and (b) Models and Decision Support Systems for Addressing Risk and Uncertainty in Forest Planning (PTDC/AGR-FOR/4526/2012); and under the European Union project AGFORWARD (Agroforestry that will advance rural development, grant agreement 613520). We would like to thank to the anonymous reviewers and Paul Burgess who provided helpful comments. The support is gratefully acknowledged.


  1. AFN (2010) Inventário Florestal Nacional Portugal Continental IFN5, 2005–2006. Autoridade Florestal Nacional, LisboaGoogle Scholar
  2. Almeida MH, Merouani H, Silva FC, Sampaio T, Lourenço MJ, Faria C, Pereira JS (2005) Efeito da idade e da fertilização na qualidade das plantas de sobreiro (Quercus suber L.) em viveiro. In: 5º Congresso Florestal Nacional, ViseuGoogle Scholar
  3. APA (1974a) Precipitação - Quantidade total - Atlas Digital de Portugal. Agencia Portuguesa do Ambiente, LisboaGoogle Scholar
  4. APA (1974b) Temperatura média diária do ar 1931–1960 - Atlas Digital de Portugal. Agencia Portuguesa do Ambiente, LisboaGoogle Scholar
  5. APA (1979) Acidez e Alcalinidade dos Solos - Atlas Digital de Portugal. Agencia Portuguesa do Ambiente, LisboaGoogle Scholar
  6. APA (1982) Carta hipsométrica - Atlas Digital de Portugal. Agencia Portuguesa do Ambiente, LisboaGoogle Scholar
  7. APA (1984) Carta Ecológica de Portugal - Atlas Digital de Portugal. Agencia Portuguesa do Ambiente, LisboaGoogle Scholar
  8. Balandier P, Dupraz C (1998) Growth of widely spaced trees. A case study from young agroforestry plantations in France. Agrofor Syst 43:151–167CrossRefGoogle Scholar
  9. Blanco E, Casado MA, Costa M, Escribano R, García M, Génova M, Gómez A, Gómez F, Moreno JC, Morla C, Regato P, Saínz H (1997) Los bosques ibéricos. Una interpretación geobotánica. Planeta, BarcelonaGoogle Scholar
  10. Burgess P, Graves A, Metselaar K, Stappers R, Keesman K, Palma J, Mayus M, van der Werf W (2004) Description of Plot-SAFE Version 0.3. Unpublished. Cranfield University, Silsoe, UKGoogle Scholar
  11. Cabanettes A, Auclair D, Imam W (1998) Diameter and height growth curves for widely-spaced trees in European agroforestry. Agrofor Syst 43:169–181CrossRefGoogle Scholar
  12. Calzado A, Torres E (2013) Modelling diameter distributions of Quercus suber L. stands in “Los Alcornocales” Natural Park (Cádiz-Málaga, Spain) by using the two parameter Weibull functions. For Syst 22(1):15–24Google Scholar
  13. Carvalho A (1996) Madeiras Portuguesas. Estrutura anatómica, Propriedades e Utilizações. Vol I. Direcção Geral das Florestas, LisboaGoogle Scholar
  14. CLC (2000) CORINE land cover technical guide. European Environment Agency, CopenhagenGoogle Scholar
  15. Correia AV, Oliveira AC (2003) Principais espécies florestais com interesse para Portugal. Ministerio da Agricultura, Desenvolvimento Rural e Pescas - Direcção Geral das Florestas, LisboaGoogle Scholar
  16. DR (2008) Portaria no. 1137-B/2008. Diario da Republica 1ª Série 196 - 9 de Outubro 2008, 7217-(7217)–7214(7217)Google Scholar
  17. DR (2011) Despacho no. 8488-B/2011. Diario da República 2ª Série 118 - 21 de Junho 2011, 26242-(26242)–26242(26244)Google Scholar
  18. Dupraz C, Burgess PJ, Gavaland A, Graves AR, Herzog F, Incoll L, Jackson N, Keesman K, Lawson G, Lecomte I, Liagre F, Mantzanas K, Mayus M, Moreno G, Palma JHN, Papanastasis V, Paris P, Pilbeam D, Reisner Y, van Noordwijk M, Vincent G, van der Werf W (2005) Synthesis of the silvoarable agroforestry for Europe project. INRA-UMR System Editions, Montpellier, p 254.
  19. EC (2005) Council Regulation (EC) no 1698/2005 of 20 September 2005 on support for rural development by the European Fund for Rural Development. Off J Eur Commun L 277, p 21Google Scholar
  20. EC (2013) REGULATION (EU) No 1305/2013 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 17 December 2013 on support for rural development by the European Agricultural Fund for Rural Development (EAFRD) and repealing Council Regulation (EC) No 1698/2005. Off J Eur Commun OJ L 347 vol 56:487–548Google Scholar
  21. EUFORGEN (2009) Distribution map of cork oak (Quercus suber L.).
  22. Faria T, Silvério D, Breia E, Cabral R, Abadia A, Pereira JS, Chaves MM (1998) Differences in the response of carbon assimilation to summer stress (water deficits, high light and temperature) in four Mediterranean tree species. Physiol Plantarum 102:419–428Google Scholar
  23. GDS (2005) Database of historical climate data compiled by Global Data Systems. United States Department of Agriculture World Weather Board from World Meteorological Organisation climate reporting systems. Access date: May 2005
  24. Graves A, Burgess P, Palma J, Herzog F, Moreno G, Bertomeu M, Dupraz C, Liagre F, Keesman K, van der Werf W, Koeffeman de Nooy A, van den Briel J (2007) Development and application of bio-economic modelling to compare silvoarable, arable and forestry systems in three European countries. Ecol Eng 29:434–449CrossRefGoogle Scholar
  25. Graves AR, Burgess PJ, Palma J, Keesman KJ, van der Werf W, Dupraz C, van Keulen H, Herzog F, Mayus M (2010) Implementation and calibration of the parameter-sparse Yield-SAFE model to predict production and land equivalent ratio in mixed tree and crop systems under two contrasting production situations in Europe. Ecol Model 221:1744–1756CrossRefGoogle Scholar
  26. IPCC (2006) Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, forestry and other land use, p 83.
  27. Joffre R, Rambal S, Ratte JP (1999) The dehesa system of southern Spain and Portugal as a natural ecosystem mimic. Agrofor Syst 45:57–79CrossRefGoogle Scholar
  28. Lane L, Nearing M (1995) USDA-Water Erosion Prediction Project (WEPP): Hillslope profile and watershed model documentation. USDA-ARS, West Lafayette, p 269.
  29. Liagre F, Dupraz C (2008) Agroforesterie: Des arbres et des cultures. Editions France AgricoleGoogle Scholar
  30. MAODTR (2012) Cumprir Quioto - Sistema de Previsão do Cumprimento do Protocolo de Quioto.
  31. Miranda PMA, Coelho M, Tomé A, Valente M (2002) 20th century Portuguese climate and climate scenarios. In: Santos F, Forbes K, Moita R (eds) Climate change in Portugal scenarios, impacts and adaptation measures—SIAM project. Gradiva, LisboaGoogle Scholar
  32. Montero G, Ruiz-Peinado R, Muñoz M (2005) Produccion de biomassa y fijación de CO2 por los bosques españoles. Ministerio de Educación y Ciencia, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, MadridGoogle Scholar
  33. Natividade JV (1950) Subericultura. D.G.S.F.A, LisboaGoogle Scholar
  34. Oliver JMM (1980) Los Alcornocales. Instituto Nacional de Investigaciones Agrarias, MadridGoogle Scholar
  35. Palma J, Graves A, Bunce R, Burgess P, De Filippi R, Keesman K, van Keulen H, Mayus M, Reisner Y, Liagre F, Moreno G, Herzog F (2007a) Modelling environmental benefits of silvoarable agroforestry in Europe. Agric Ecosyst Environ 119:320–334CrossRefGoogle Scholar
  36. Palma J, Graves AR, Burgess PJ, van der Werf W, Herzog F (2007b) Integrating environmental and economic performance to assess modern silvoarable agroforestry in Europe. Ecol Econ 63:759–767CrossRefGoogle Scholar
  37. Paulo JA, Tomé M. (2008) Recolha de dados para determinação de biomassas e volumes de sobreiro. Protocolo para instalação de parcelas temporárias e medição de árvores amostra. Publicações FORCHANGE. RT3/2008. Universidade Técnica de Lisboa. Instituto Superior Agronomia. Centro de Estudos Florestais, Lisboa, Portugal, p 18.
  38. Pereira J, Correia A, Correia A, Ferreira M, Onofre N, Freitas H, Godinho F (2006) Florestas e Biodiversidade. In: Santos F, Miranda P (eds) Alterações Climáticas em Portugal – Cenários, Impactos e Medidas de Adaptação - Projecto SIAM II. Gradiva, Lisboa, pp 301–343Google Scholar
  39. Pereira TC, Seabra T, Maciel H, Torres P. (2010) Portuguese National Inventory Report on Greenhouse gases 1990–2008. Portuguese Environmental Agency, Amadora.
  40. Pinto-Correia T (1993) Threatened landscape in Alentejo, Portugal—the Montado and other agro-silvo-pastoral systems. Landsc Urban Plan 24:43–48CrossRefGoogle Scholar
  41. Pinto-Correia T (2000) Future development in Portuguese rural areas: how to manage agricultural support for landscape conservation? Landsc Urban Plan 50:95–106CrossRefGoogle Scholar
  42. Plieninger T, Wilbrand C (2001) Land use, biodiversity conservation, and rural development in the dehesas of Cuatro Lugares, Spain. Agrofor Syst 51:23–34CrossRefGoogle Scholar
  43. Sanchez-Gonzalez M, Tome M, Montero G (2005) Modelling height and diameter growth of dominant cork oak trees in Spain. Ann For Sci 62:633–643CrossRefGoogle Scholar
  44. Schroter D, Cramer W, Leemans R, Prentice IC, Araujo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpaa S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabate S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337PubMedCrossRefGoogle Scholar
  45. Serrada R, Montero G, Reque JA (2008) Compendio de Selvicultura Aplicada en España. Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria. Ministerio de Educación y Ciencia, MadridGoogle Scholar
  46. Tomé M (2004) Modelo de crescimento e produção para a gestão do montado de sobro em Portugal. Projecto POCTI/AGR/35172/99. Relatório Final - Relatório de Execução Material (vol I). Centro de Estudos Florestais - Instituto Superior de Agronomia - Universidade Técnica de Lisboa, Lisboa - Portugal, p 89.
  47. Tomé J, Tomé M, Barreiro S, Paulo JA (2006) Age-independent difference equations for modelling tree and stand growth. Can J For Res 36:1621–1630CrossRefGoogle Scholar
  48. van der Werf W, Keesman K, Burgess P, Graves A, Pilbeam D, Incoll LD, Metselaar K, Mayus M, Stappers R, van Keulen H, Palma J, Dupraz C (2007) Yield-SAFE: a parameter-sparse, process-based dynamic model for predicting resource capture, growth, and production in agroforestry systems. Ecol Eng 29:419–433CrossRefGoogle Scholar
  49. Wösten J, Lilly A, Nemes A, Le Bas C (1999) Development and use of a database of hydraulic properties of European soils. Geoderma 90:169–185CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.FORCHANGE – Forest Ecosystems Management Under Global Change, Centro de Estudos Florestais, Instituto Superior de AgronomiaUniversidade de LisboaLisbonPortugal

Personalised recommendations