Agroforestry Systems

, Volume 88, Issue 6, pp 1101–1115 | Cite as

Tree diversity in cacao agroforests in San Alejandro, Peruvian Amazon

  • Hana Vebrova
  • Bohdan LojkaEmail author
  • Thomas P. Husband
  • Maria Elena Chuspe Zans
  • Patrick Van Damme
  • Alexandr Rollo
  • Marie Kalousova


Cacao (Theobroma cacao) cultivation maintaining a high proportion of shade trees in a diverse composition (agroforestry) is currently being viewed as a sustainable land use practice. Our research hypothesis was that cacao agroforests (AF) can support relatively high tree diversity, as compared to surrounding primary and/or secondary forests. The objective of this study was to assess the impact of forest conversion on tree communities by comparing tree composition, community characteristics (richness and diversity) and spatial structure (density, canopy height, basal area) among primary forest, secondary forest, and cacao AF. In total, we collected data from 30 25 × 25 m plots on three land use systems (20 in cacao AF, five in secondary, and five in primary forests) in San Alejandro, Peruvian Amazon. All trees with DBH ≥ 10 cm were counted, identified to species, and their height and DBH were recorded. Our results support the hypothesis that cacao AF present a relatively high tree species richness and diversity, although they are no substitute for natural habitats. We identified most common species used for shading cacao. Tree species composition similarity was highest between cacao AF and secondary forest. Vegetation structure (density, height, DBH) was significantly lower compared to primary and secondary forest. Species richness and diversity were found to be highest in the primary forest, but cacao AF and secondary forests were fairly comparable. The tree species cultivated in cacao AF are very different from those found in primary forest, so we question whether the relatively high tree diversity and richness is able to support much of the diversity of original flora and fauna.


Primary forest Secondary forest Species richness Theobroma cacao Vegetation structure 



This research was supported by grants from The Czech Foundation for Development of Education; Foundation Nadání Josefa, Marie a Zdeňky Hlávkových; the Fulbright Commission in the Czech Republic and internal grant of the Faculty of Tropical AgriSciences, CULS Prague (N°20135121). We would like to thank to many people from Universidad Nacional Intercultural de la Amazonía, Universidad Nacional de Ucayali and local cacao farmers from the cooperative ACATPA in San Alejandro for their cooperation during our research. We also highly appreciate the work of two anonymous reviewers that substantially improved the quality of the manuscript.


  1. Anduaga RS (2009) Situación y Perspectivas de la Cadena del Cacao Chocholate en el Perú. IICA, LimaGoogle Scholar
  2. Anglaaere LCN, Cobbina J, Sinclair FL, McDonald MA (2011) The effect of land use systems on tree diversity: farmer preference and species composition of cacao-based agroecosystems in Ghana. Agrofor Syst 81:249–265CrossRefGoogle Scholar
  3. Asase A, Tetteh DA (2010) The role of complex agroforestry systems in the conservation of forest tree diversity and structure in southeastern Ghana. Agrofor Syst 79:355–368CrossRefGoogle Scholar
  4. Asase A, Ofori-Frimpong K, Ekpe PK (2009) Impact of cocoa farming on vegetation in an agricultural landscape in Ghana. J Afr Ecol 48:338–346CrossRefGoogle Scholar
  5. Atkins JE, Eastin I (2012) Farmers perceptions of indigenous forest trees within the cultivated cocoa landscape. Forestry Chron 88(5):535–541CrossRefGoogle Scholar
  6. Bobo K, Waltert M, Sainge NM, Njokagbo N, Fermon H, Muhlenberg M (2006) From forest to farmland: species richness patterns of trees and understorey plants along a gradient of forest conversion in southwestern Cameroon. Biodiv Conserv 15:4097–4117CrossRefGoogle Scholar
  7. Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing compositional similarity based on incidence and abundance data. Ecol Lett 8:148–159CrossRefGoogle Scholar
  8. Colwell RK (2009) Estimates: statistical estimation of species richness and shared species from samples, version 8.2. Persistent
  9. Daghela Bisseleua HB, Herve B, Vidal S (2007) Plant biodiversity and vegetation structure in traditional cocoa forest gardens in southern Cameroon under different management. Biodiv Conserv 17:1821–1835CrossRefGoogle Scholar
  10. Daghela Bisseleua HB, Fotio D, Yede Missoup AD, Vidal S (2013) Shade tree diversity, cocoa pest damage, yield compensating inputs and farmers’ net returns in West Africa. PLoS One 8(3):e56115PubMedCentralCrossRefGoogle Scholar
  11. Deheuvels O, Avelino J, Somarriba E, Malezieux E (2012) Vegetation structure and productivity in cocoa-based agroforestry systems in Talamanca, Costa Rica. Agric Ecosyst Environ 149:181–188CrossRefGoogle Scholar
  12. Duguma B, Gockowski J, Bakala J (2001) Smallholder Cacao (Theobroma cacao) cultivation in agroforestry systems of West and Central Africa: challenges and opportunities. Agrofor Syst 51:177–188CrossRefGoogle Scholar
  13. FAO (2011) FAOSTAT crop production. ( [online]. Available at Accessed Sept 20, 2013
  14. Fazey I, Fischer J, Lindenmayer DB (2005) What do conservation biologists publish? Biol Conserv 124:63–73CrossRefGoogle Scholar
  15. García Carrion LF (2010) Catálogo de Cultivares de Cacao del Perú. Ministerio de Agricultura Dirección General de Competividad Agraria, Lima 112 ppGoogle Scholar
  16. Gascon G, Williamson GB, da Fonseca GAB (2000) Receding forest edges and vanishing reserves. Science 288:1356–1358PubMedCrossRefGoogle Scholar
  17. Gonzales TT (2008) Plan vial provincial participativo de Padre Abad. Municipalidad provincial de Padre Abad, PucallpaGoogle Scholar
  18. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  19. Harvey CA, González JAV (2007) Agroforestry systems conserve species-rich but modified assemblages of tropical birds and bats. Biodivers Conserv 16:2257–2292CrossRefGoogle Scholar
  20. Harvey CA, González J, Somarriba E (2006) Dung beetle and terrestrial mammal diversity in forests, indigenous agroforestry systems and plantain monocultures in Talamanca, Costa Rica. Biodivers Conserv 15:555–585CrossRefGoogle Scholar
  21. Heltshe JF, Forrester NE (1983) Estimating species richness using the jackknife procedure. Biometrics 39:1–11PubMedCrossRefGoogle Scholar
  22. Kessler M, Kesler PJA, Gradstein SR, Bach K, Schmull M, Pitopang R (2005) Tree diversity in primary forest and different land use systems in Central Sulawesi, Indonesia. Biodiv Conserv 14:547–560CrossRefGoogle Scholar
  23. Koko LK, Snoeck D, Lekadou TT, Assiri AA (2013) Cacao-fruit tree intercropping effects on cocoa yield, plant vigour and light interception in Cote d’Ivoire. Agrofor Syst 87:1043–1052CrossRefGoogle Scholar
  24. Krebs CJ (1999) Ecological Methodology, vol Second. Addison Wesley Longman, Inc University of British Columbia, CanadaGoogle Scholar
  25. Lindenmayer DB (2010) Landscape change and the science of biodiversity conservation in tropical forests: a view from the temperate world. Biol Conserv 143:2405–2411CrossRefGoogle Scholar
  26. Magurran AE (2004) Measuring biological diversity. Blackwell Science Ltd, MaldenGoogle Scholar
  27. McNeely J, Schroth G (2006) Agroforestry and biodiversity conservation—traditional practices, present dynamics, and lessons for the future. Biodiv Conserv 15:549–554CrossRefGoogle Scholar
  28. Oke DO, Odebiyi KA (2007) Traditional cocoa-based agroforestry and forest species conservation in Ondo State, Nigeria. Agric Ecosyst Environ 122:305–311CrossRefGoogle Scholar
  29. Parthasarathy N (1999) Tree diversity and distribution in undisturbed and human-impacted sites of tropical wet evergreen forest in the southern Western Ghats, India. Biodiv Conserv 8:1365–1381CrossRefGoogle Scholar
  30. Peres CA, Gardner TA, Barlow J, Zuanon J, Michalski F, Lees AC, Vieira ICG, Moreira FMS, Feeley KJ (2010) Biodiversity conservation in human-modified Amazonian forest landscapes. Biol Conserv 143:2314–2327CrossRefGoogle Scholar
  31. Reynel C, Pennington RT, Pennington TD, Flores C, Daza A (2003) Árboles útiles de la Amazonía Peruana. Tarea Gráfica Educativa, Perú.Google Scholar
  32. Rolim SG, Chiarello AG (2004) Slow death of Atlantic forest trees in cocoa agroforestry in southeastern Brazil. Biodivers Conserv 13:2679–2694CrossRefGoogle Scholar
  33. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterhel M, Poff NL, Sykes M, Walker BH, Walker M, Wall DH (2006) Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefGoogle Scholar
  34. Sambuichi RHR, Haridasan M (2007) Recovery of species richness and conservation of native Atlantic forest trees in the cacao plantations of southern Bahia in Brazil. Biodivers Conserv 16:3681–3701CrossRefGoogle Scholar
  35. Sambuichi RHR, Widal DB, Piasentin FB, Jardim JG, Viana TG, Menezes AA, Mello DL, Ahnert D, Baligar VC (2012) Caburca agroforests in southern Bahia, Brazil: tree component, management practices and tree species conservation. Biodivers Conserv 21(4):1055–1077CrossRefGoogle Scholar
  36. Schroth G, Harvey CA (2007) Biodiversity conservation in cocoa production landscapes: an overview. Biodiv Conserv 16:2237–2244CrossRefGoogle Scholar
  37. Schroth G, Da Foneseca AB, Harvey CA, Gascon C, Vasconcelos HL, Izac AMN (2004) The role of agroforestry in biodiversity conservation in tropical landscapes. In: Schroth G et al (eds) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, pp 1–12Google Scholar
  38. Somarriba E, Beer J (2011) Productivity of Theobroma cacao agroforestry systems with timber or legume service shade trees. Agrofor Syst 81:109–121CrossRefGoogle Scholar
  39. Somarriba E, Harvey CA, Semper M, Anthony F, González J, Staver C, Rice RA (2004) Biodiversity conservation in Neotropical coffee (Coffea arabica) plantations. In: Schroth G, da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac AMN (eds) Agroforestry and biodiversity conservation in tropical landscape. Island Press, Washington, pp 198–226Google Scholar
  40. Sonwa DJ, Nkongmeneck BA, Weise SF et al (2007) Diversity of plants in cocoa agroforests in the humid forest zone of Southern Cameroon. Biodivers Conserv 16:2385–2400CrossRefGoogle Scholar
  41. Sotelo C, Vidaurre H, Weber J, Simons A, Dawson I (2000) Domesticación participativa de árboles agroforestales en la amazonia peruana. In: Congreso Forestal Latinoamericano 2000. Capítulo de Ingeniería Forestal, Lima, PerúGoogle Scholar
  42. Turner IM (2001) The Ecology of trees in the tropical rainforest. Cambridge University, CambridgeCrossRefGoogle Scholar
  43. Turner IM, Wong YK, Chew PT, bin Ibrahim A (1997) Tree species richness in primary and old secondary tropical forest in Singapore. Biodiv Conserv 6:237–543Google Scholar
  44. Van Dijk JM (1999) Non-timber forest products in the Bipindi-Akom Region, Cameroon: a socio-economic and ecological assessment. The Tropenbos-Cameroon Programme, KribiGoogle Scholar
  45. Whitmore TC, Sayer JA (1992) Tropical Deforestation and Species Extinction. Chapman & Hall, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Hana Vebrova
    • 1
  • Bohdan Lojka
    • 1
    Email author
  • Thomas P. Husband
    • 2
  • Maria Elena Chuspe Zans
    • 3
  • Patrick Van Damme
    • 1
    • 4
    • 5
  • Alexandr Rollo
    • 1
  • Marie Kalousova
    • 1
  1. 1.Faculty of Tropical AgriSciencesCzech University of Life Sciences PraguePrague 6, SuchdolCzech Republic
  2. 2.Department of Natural Resources Science, Coastal Institute in KingstonUniversity of Rhode IslandKingstonUSA
  3. 3.Universidad Nacional Intercultural de la AmazoníaPucallpaPeru
  4. 4.Laboratory of Tropical and Subtropical Agriculture and EthnobotanyGhent UniversityGhentBelgium
  5. 5.World Agroforestry CentreNairobiKenya

Personalised recommendations