Advertisement

Agroforestry Systems

, Volume 87, Issue 6, pp 1421–1437 | Cite as

Assessing foraging strategies of herbivores in Mediterranean oak woodlands: a review of key issues and selected methodologies

  • Maria Isabel Ferraz de OliveiraEmail author
  • Elsa Lamy
  • Miguel N. Bugalho
  • Margarida Vaz
  • Cristina Pinheiro
  • Manuel Cancela d’Abreu
  • Fernando Capela e Silva
  • Elvira Sales-Baptista
Article

Abstract

Montados are agro-silvo-pastoral ecosystems, typical of the Southwest Iberian Peninsula, of high socio-economic and conservation importance, where grazing is a dominant activity. Montados are characterized by an open tree canopy of Quercus sp. and a diverse undercover of shrubs and grasslands that constitute the plant food resources for grazing animals. Plant food resources of Montados are highly variable, both spatially and seasonally, in quantity and quality. Reliable and easy to use methods to monitor grazing are necessary to allow proper understanding of foraging strategies of grazing animals and to set sustainable grazing management. We describe the main characteristics of the plant food resources available for grazing animals, striking its variability, and revise the potential of using N-alkanes and saliva proteome methods to assess foraging strategies in Montados. In a scenario of dynamic multiple choices, we discuss the use of n-alkane methodology for the simultaneous estimation of diet composition and voluntary intake and saliva proteome as a mean of increasing the knowledge on diet adjustments.

Keywords

Montado/Dehesa Agro-silvo-pastoral systems Grazing ecology Foraging behavior N-alkanes Salivary proteins 

Notes

Acknowledgments

We thank two anonymous referees for their comments that greatly improved a previous version of the manuscript. This work was funded by FEDER Funds through the Operational Programme for Competitiveness Factors—COMPETE and National Funds through FCT—Foundation for Science and Technology under the Strategic Projects PEst-C/AGR/UI0115/2011 and PEst-C/QUI/UI0062/2011. We acknowledge also the financial support from the Portuguese Science Foundation (FCT) in the forms of “Ciência 2008” research contracts of MI Ferraz de Oliveira and MN Bugalho, Post-Doctoral grants (SFRH/BPD/63240/2009 and SFRH/BPD/90668/2012) of E Lamy and MN Bugalho and Post-Doctoral grant within the research project ALENT-07-0224-FEDER-001744 of MI Ferraz de Oliveira. The funding sources played no role in the development of the present work or upon its submission for publication.

References

  1. Alonso-Díaz MA, Torres-Acosta JFJ, Sandoval-Castro CA, Hoste H (2010) Tannins in tropical tree fodders fed to small ruminants: a friendly foe? Small Rumin Res 89:164–167. doi: 10.1016/j.smallrumres.2009.12.040 CrossRefGoogle Scholar
  2. Ammar H, López S, Salem AZM, Bodas R, Gonzalez JS (2011) Effect of saliva from sheep that have ingested quebracho tannins on the in vitro rumen fermentation activity to digest tannin-containing shrubs. Anim Feed Sci Technol 163:77–83. doi: 10.1016/j.anifeedsci.2010.10.007 CrossRefGoogle Scholar
  3. Austin PJ, Suchar LA, Robbins CT, Hagerman AE (1989) Tannins-binding proteins in saliva of deer and their absence in saliva of sheep and cattle. J Chem Ecol 15:1335–1347. doi: 10.1007/BF01014834 CrossRefGoogle Scholar
  4. Barcia P, Bugalho MN, Campagnolo ML, Cerdeira JO (2007) Using n-alkanes to estimate diet composition of herbivores: a novel mathematical approach. Animal 1:141–149. doi: 10.1017/S1751731107340068 PubMedCrossRefGoogle Scholar
  5. Behrens M, Meyerhof W (2011) Gustatory and extragustatory functions of mammalian taste receptors. Physiol Behav 105:4–13. doi: 10.1016/j.physbeh.2011.02.010 PubMedCrossRefGoogle Scholar
  6. Brooker JD, O’Donovan LO, Skene I, Sellick G (1999) Mechanisms of tannin resistance and detoxification in the rumen. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Microbial biosystems: new frontiers. Proceedings of the 8th international symposium on microbial ecology. Halifax, CanadaGoogle Scholar
  7. Bugalho MN, Milne JA (2003) The composition of the diet of red deer (Cervus elaphus) in a Mediterranean environment: a case of summer nutritional constraint? For Ecol Manage 181:23–29. doi: 10.1016/S0378-1127(03)00125-7 CrossRefGoogle Scholar
  8. Bugalho MN, Milne JA, Mayes RW (2002) The effects of feeding selectivity on the estimation of diet composition using the n-alkane technique. Grass Forage Sci 57:224–231. doi: 10.1046/j.1365-2494.2002.00320.x CrossRefGoogle Scholar
  9. Bugalho MN, Dove H, Kelman W, Wood JT, Mayes RW (2004) Plant wax alkanes and alcohols as herbivore diet composition markers. J Range Manage 57:259–268CrossRefGoogle Scholar
  10. Bugalho MN, Milne JA, Mayes RW, Rego FC (2005) Plant-wax alkanes as seasonal markers of red deer dietary components. Can J Zool 83:465–473. doi: 10.1139/z05-031 CrossRefGoogle Scholar
  11. Bugalho MN, Plieninger T, Aronson J, Ellatifi M, Crespo DG (2009) Open woodlands: a diversity of uses (and overuses). In: Aronson J, Pereira JS, Pausas J (eds) Cork oak woodlands on the edge: ecology, biogeography, and restoration of an ancient Mediterranean ecosystem. Island Press, Washington, DC, pp 33–45Google Scholar
  12. Bugalho MN, Caldeira MC, Pereira JS, Aronson J, Pausas JG (2011) Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Front Ecol Environ 9:278–286. doi: 10.1890/100084 CrossRefGoogle Scholar
  13. Burritt EA, Malechek JC, Provenza FD (1987) Changes in concentrations of tannins, total phenolics, crude protein, and in vitro digestibility of browse due to mastication and insalivation by cattle. J Range Manage 40:409–411CrossRefGoogle Scholar
  14. Cancela d’Abreu M (1992) Food value of three annual pasture for sheep. PhD Dissertation, Universidade de Évora, Portugal (In portuguese)Google Scholar
  15. Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osório ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field? Photosynthesis and Growth. Ann Bot 89:907–916. doi: 10.1093/aob/mcf105 PubMedCrossRefGoogle Scholar
  16. Chiquette J, Cheng KJ, Costerton JW, Milligaln P (1988) Effect of tannins on the digestibility of two isosynthetic strains of birdsfoot trefoil (Lotus corniculatus L.) using in vitro and in sacco techniques. Can J Anim Sci 68:751–760. doi: 10.4141/cjas88-084 CrossRefGoogle Scholar
  17. Christensen CM (1986) Importance of saliva in diet-taste relationships. In: Kare MR, Brand JG (eds) Interaction of the chemical senses with nutrition. Academic Press, London, pp 3–24CrossRefGoogle Scholar
  18. Clauss M, Lason K, Gehrke J, Lechner-Doll M, Fickel J, Grune T, Streich WJ (2003) Captive roe deer (Capreolus capreolus) select for low amounts of tannic acid but not quebracho: fluctuation of preferences and potential benefits. Comp Biochem Physiol B 136:369–382. doi: 10.1016/S1096-4959(03)00244-6 PubMedCrossRefGoogle Scholar
  19. Cruz C (2002) Effect of anthropogenic activities on the dynamics of herbaceous and shrub communities in Montado system. M.Sc. Dissertation. Universidade de Évora, Portugal (In portuguese)Google Scholar
  20. DeMiguel D, Fortelius M, Azanza B, Morales J (2008) Ancestral feeding state of ruminants reconsidered: earliest grazing adaptation claims a mixed condition for Cervidae. Evol Biol 8:13. doi: 10.1186/1471-2148-8-13 CrossRefGoogle Scholar
  21. Díaz M, Campos P, Pulido FJ (1997) The Spanish dehesas: a diversity of land use and wildlife. In: Pain D, Pienkowski M (eds) Farming and birds in Europe: the Common Agricultural Policy and its implications for bird conservation. Academic Press, London, pp 178–209Google Scholar
  22. Díaz-Villa MD, Marañón T, Arroyo J, Garrido B (2003) Soil seed bank and floristic diversity in a forest-grassland mosaic in southern Spain. J Veg Sci 14:701–709. doi: 10.1111/j.1654-1103.2003.tb02202.x CrossRefGoogle Scholar
  23. Distel RA, Provenza FD (1991) Experience early in life affects voluntary intake of blackbrush by gotas. J Chem Ecol 17:431–450. doi: 10.1007/BF00994343 CrossRefGoogle Scholar
  24. Dove H (1992) Using the n-alkanes of plant cuticular wax to estimate the species composition of herbage mixtures. Aust J Agric Res 43:1711–1724. doi: 10.1071/AR9921711 CrossRefGoogle Scholar
  25. Dove H, Mayes RW (1991) The use of plant wax alkanes as marker substances in studies of the nutrition of herbivores: a review. Aust J Agric Res 42:913–952. doi: 10.1071/AR9910913 CrossRefGoogle Scholar
  26. Dove H, Mayes RW (1996) Plant wax components: a new approach to estimating intake and diet composition in herbivores. J Nutr 126:13–26PubMedGoogle Scholar
  27. Dove H, Mayes RW (2005) Using n-alkanes and other plant wax components to estimate intake, digestibility and diet composition of grazing/browsing sheep and goats. Small Rumin Res 59:123–139. doi: 10.1016/j.smallrumres.2005.05.016 CrossRefGoogle Scholar
  28. Dove H, Mayes RW (2006) Protocol for the analysis of n-alkanes and other plant-wax compounds and for their use as markers for quantifying the nutrient supply of large mammalian herbivores. Nat Protoc 1:1–18. doi: 10.1038/nprot.2006.225 CrossRefGoogle Scholar
  29. Dove H, Moore AD (1995) Using a least-squares optimisation procedure to estimate botanical composition based on the alkanes of plant cuticular wax. Aust J Agr Res 46:1535–1544. doi: 10.1071/AR9951535 CrossRefGoogle Scholar
  30. Duncan AJ, Poppi DP (2008) Nutritional ecology of grazing and browsing ruminants. In: Gordon IJ, Prins HHT (eds) The ecology of browsing and grazing. Springer, Berlin, pp 89–116CrossRefGoogle Scholar
  31. Ferraz de Oliveira MI, Cancela d’Abreu M, Freitas AB (2007) The effect of polyethylene glycol (PEG) on protein output of free range Alentejano pigs. In: Nanni Costa L, Zambonelli P, Russo V (eds) Proceedings of the 6th international symposium on the Mediterranean pig. Messina, Capo d’Orlando (ME), Italy, pp 236–239Google Scholar
  32. Ferraz de Oliveira MI, Machado MG, Cancela d’Abreu M (2010) N-alkane profile of acorns from Quercus rotundifolia and Quercus suber. In: 7th international symposium on the Mediterranean Pig, Cordoba, Spain, pp 54Google Scholar
  33. Ferraz de Oliveira MI, Machado MG, Cancela d’Abreu M (2012) Acorn chemical composition depending on shedding date and Quercus species. Options Mediterr A 101:229–234Google Scholar
  34. Ferreira LMM, Carvalho S, Falco V, Celaya R, García U, Santos AS, Rodrigues MAM, Osoro K (2009) Assessment of very long-chain fatty acids as complementary or alternative natural fecal markers to n-alkanes for estimating diet composition of goats feeding on mixed diets. J Anim Sci 87:2732–2745. doi: 10.2527/jas.2008-1718 PubMedCrossRefGoogle Scholar
  35. Forbes JM (2007) Voluntary food intake and diet selection in farm animals, 2nd edn. Cab International, WallingfordCrossRefGoogle Scholar
  36. Fraisse D, Carnat A, Viala D, Pradel P, Besle J-M, Coulon J-B, Felgines C, Lamaison J-L (2007) Polyphenolic composition of a permanent pasture: variations related to the period of harvesting. J Sci Food Agric 13:2427–2435. doi: 10.1002/jsfa.2918 CrossRefGoogle Scholar
  37. Gehrke J (2001) Investigations of tannin-binding salivary proteins of roe deer and other ruminants. PhD Dissertation, University of Potsdam, Potsdam, Germany (In german with English summary)Google Scholar
  38. Gordon IJ (1995) Animal-based techniques for grazing ecology research. Small Rumin Res 16:203–214. doi: 10.1016/0921-4488(95)00635-X CrossRefGoogle Scholar
  39. Hagerman AE, Robbins CT (1993) Specificity of tannin-binding salivary proteins relative to diet selection by mammals. Can J Zool 71:628–633. doi: 10.1139/Z10-064 CrossRefGoogle Scholar
  40. Hanovice-Ziony M, Gollop N, Landau SY, Ungar ED, Muklada H, Glasser TA, Perevolotsky A, Walker JW (2010) No major role for binding by salivary proteins as a defense against dietary tannins in Mediterranean goats. J Chem Ecol 36:736–743. doi: 10.1007/s10886-010-9809-z PubMedCrossRefGoogle Scholar
  41. Helmerhorst EJ, Oppenheim FGJ (2007) Saliva: a dynamic proteome. Dent Res 86:680–693. doi: 10.1177/154405910708600802 CrossRefGoogle Scholar
  42. Hofmann RR, Stewart DRM (1972) Grazer or browser: a classification based on the stomach structure and feeding habits of East African ruminants. Mammalia 36:226–240CrossRefGoogle Scholar
  43. IMP (2012) Inst. de Meteorologia de Portugal. http://www.meteo.pt/pt/oclima/clima.normais/007/. Accessed 25 May 2012
  44. INE (1990) Instituto Nacional de Estatística. Recenseamento Geral Agrícola, 1989. INE (ed) IP, Lisboa, PortugalGoogle Scholar
  45. INE (2000) Instituto Nacional de Estatística. Recenseamento Geral Agrícola, 1999. INE (ed), IP, Lisboa, PortugalGoogle Scholar
  46. INE (2006) Instituto Nacional de Estatística. Inquérito à estrutura das explorações agrícolas, 2005. INE (ed), IP, Lisboa, PortugalGoogle Scholar
  47. Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80PubMedCrossRefGoogle Scholar
  48. Lamy E, Mau M (2012) Saliva proteomics as an emerging, non-invasive tool to study livestock physiology, nutrition and diseases. J Proteomics. doi: 10.1016/j.jprot.2012.05.007 PubMedGoogle Scholar
  49. Lamy E, da Costa G, Capela e Silva F, Potes J, Coelho AV, Baptista ES (2008) Comparison of electrophoretic protein profiles from sheep and goat parotid saliva. J Chem Ecol 34:388–397. doi: 10.1007/s10886-008-9442-2 PubMedCrossRefGoogle Scholar
  50. Lamy E, da Costa G, Santos R, Capela e Silva F, Potes J, Pereira A, Coelho AV, Sales Baptista E (2009) Sheep and goat saliva proteome analysis: a useful tool for ingestive behavior research? Physiol Behav 98:393–401. doi: 10.1016/j.physbeh.2009.07.002 PubMedCrossRefGoogle Scholar
  51. Lamy E, da Costa G, Santos R, Capela e Silva F, Potes J, Pereira A, Coelho AV, Sales Baptista E (2011) Effect of condensed tannin ingestion in sheep and goat parotid saliva proteome. J Anim Physiol Anim Nutr (Berl) 95:304–312. doi: 10.1111/j.1439-0396.2010.01055.x CrossRefGoogle Scholar
  52. Llusia J, Penuelas J, Alessio GA, Estiarte M (2006) Seasonal contrasting changes of foliar concentrations of terpenes and other volatile organic compound in four dominant species of a Mediterranean shrubland submitted to a field experimental drought and warming. Physiol Plantarum 127:632–649. doi: 10.1111/j.1399-3054.2006.00693.x CrossRefGoogle Scholar
  53. Makkar HPS, Becker K (1998) Adaptation of cattle to tannins: role of proline-rich proteins in oak-fed cattle. Anim Sci 67:277–281. doi: 10.1017/S1357729800010031 CrossRefGoogle Scholar
  54. Martins H, Elston DA, Mayes RW, Milne JA (2002a) Assessment of the use of n-alkanes as markers to describe the complex diets of herbivores. J Agric Sci 138:425–434. doi: 10.1017/S0021859602002046 CrossRefGoogle Scholar
  55. Martins H, Milne JÁ, Rego F (2002b) Quantification of the seasonal and spatial variation in the diet of a wild rabbit population in a Southern Portuguese Montado. J Zool 258:395–404. doi: 10.1017/S0952836902001541 CrossRefGoogle Scholar
  56. Mayes RW, Dove H (2000) Measurement of dietary nutrient intake in free-ranging mammalian herbivores. Nutr Res Rev 13:107–138PubMedCrossRefGoogle Scholar
  57. Mayes RW, Lamb CS (1984) The possible use of n-alkanes in herbage as indigestible faecal markers. Proc Nutr Soc 43:39AGoogle Scholar
  58. Mayes RW, Lamb CS, Colgrove PM (1986) The use of dosed and herbage n-alkanes as markers for the determination of herbage intake. J Agric Sci Camb 107:161–170. doi: 10.1017/S0021859600066910 CrossRefGoogle Scholar
  59. Mayes RW, Beresford NA, Lamb CS, Barnett CL, Howard BJ, Jones B-EV, Eriksson O, Hove K, Pedersen Ø, Staines BW (1994) Novel approaches to the estimation of intake and bioavailability of radiocaesium in ruminants grazing forested areas. Sci Total Environ 157:289–300. doi: 10.1016/0048-9697(94)90592-4 PubMedCrossRefGoogle Scholar
  60. Mole S, Butler LG, Iason G (1990) Defense against dietary tannin in herbivores—a survey for proline-rich salivary proteins in mammals. Biochem Syst Ecol 18:287–293. doi: 10.1016/0305-1978(90)90073-O CrossRefGoogle Scholar
  61. Mysterud A, Pérez-Barbería FJ, Gordon IJ (2001) The effect of season, sex and feeding style on home range area versus body mass scaling in temperate ruminants. Oecologia 127:30–39. doi: 10.1007/s004420000562 CrossRefGoogle Scholar
  62. Naveh Z (1982) The dependence of the productivity of a semi-arid mediterranean hill pasture ecosystem on climatic fluctuations. Agric Environ 7:47–61CrossRefGoogle Scholar
  63. Neyraud E, Sayd T, Morzel M, Dransfield E (2006) Proteomic analysis of human whole and parotid salivas following stimulation by different tastes. J Proteome Res 5:2474–2480. doi: 10.1021/pr060189z PubMedCrossRefGoogle Scholar
  64. Parker WJ, Morris ST, Garrick WJ, Vincent GL, McCutcheon SN (1990) Intraruminal chromium controlled release capsules for measuring herbage intake in ruminants—a review. Proc NZ Soc Anim Prod 50:437–442Google Scholar
  65. Patamia M, Messana I, Ptruzzelli R, Vitali A, Inzitari R, Cabras T, Fanali C, Scarano E, Contucci A, Galtieri A, Castagnola M (2005) Two proline-rich peptides from pig (Sus scrofa) salivary glands generated by pre-secretory pathway underlying the action of a proteinase cleaving ProAla bonds. Peptides 26:1550–1559. doi: 10.1016/j.peptides.2005.02.021 PubMedCrossRefGoogle Scholar
  66. Pérez-Barberia FJ, Gordon IJ (2001) Relationships between oral morphology and feeding style in the ungulata: a phylogenetically controlled evaluation. Proc R Soc Lond B 268:1023–1033. doi: 10.1098/rspb.2001.1619 CrossRefGoogle Scholar
  67. Pérez-Maldonado RA, Norton BW, Kerven GL (1995) Factors affecting in vitro formation of tannin protein complexes. J Sci Food Agric 69:291–298. doi: 10.1002/jsfa.2740690305 CrossRefGoogle Scholar
  68. Pérez-Ramos IM, Zavala MA, Maranon T, Díaz-Villa MD, Valladares F (2008) Dynamics of understory herbaceous plant diversity following shrub clearing of cork oak forests: a five-year study. For Ecol Manage 255:3242–3253CrossRefGoogle Scholar
  69. Pinto Correia T (1993) Threatened landscape in Alentejo, Portugal: the ‘montado’ and other ‘agro-silvo-pastoral’ systems. Landsc Urban Plan 24:43–48. doi: 10.1016/0169-2046(93)90081-N CrossRefGoogle Scholar
  70. Plieninger T, Wilbrand C (2001) Land use, biodiversity conservation, and rural development in the Dehesas of Cuatro Lugares, Spain. Agrofor Syst 51:23–34. doi: 10.1023/A:1006462104555 CrossRefGoogle Scholar
  71. Proctor GB, Carpenter GH (2007) Regulation of salivary gland function by autonomic nerves. Auton Neurosci 133:3–18. doi: 10.1016/j.autneu.2006.10.006 PubMedCrossRefGoogle Scholar
  72. Provenza FD, Cincotta RP (1993) Foraging as a self-organizational learning process: accepting adaptability at the expense of predictability. In: Hughes RN (ed) Diet selection: an interdisciplinary approach to foraging behaviour. Blackwell Scientific Publications, London, pp 78–101Google Scholar
  73. Provenza FD, Malechek JC (1984) Diet selection by domestic goats in relation to blackbrush twig chemistry. J Appl Ecol 21:831–841CrossRefGoogle Scholar
  74. Robbins CT, Hanley TA, Hagerman AE, Hjeljord O, Baker DL, Schwartz CC, Mautz WW (1987) Role of tannins in defending plants against ruminants: reduction in protein availability. Ecology 68:98–107CrossRefGoogle Scholar
  75. Rodríguez-Estévez V, García A, Peña F, Gómez AG (2009) Foraging of Iberian fattening pigs grazing natural pasture in the Dehesa. Livest Sci 120:135–143. doi: 10.1016/j.livsci.2008.05.006 CrossRefGoogle Scholar
  76. Rogosic J, Estell RE, Skobic D, Martinovic A, Maric S (2006) Role of species diversity and secondary compound complementarity on diet selection of mediterranean shrubs by goats. J Chem Ecol 32:1279–1287. doi: 10.1007/s10886-006-9084-1 PubMedCrossRefGoogle Scholar
  77. Sales-Baptista E (1995) A comparative study of trophic strategies in goats and sheep under restricted food intake. PhD dissertation, Universidade de Évora, Portugal (In portuguese)Google Scholar
  78. Sales-Baptista E (2001) Effect of poliphenols on the use of shrub resources by ruminants. Contrato Praxis nº3/3.2/CA/1982/95, Estação Zootécnica Nacional, Instituto de Investigação Agrária, Santarém, Portugal (In portuguese)Google Scholar
  79. Sales-Baptista E, Lamy E, Mau M, Capela e Silva F, Coelho AV (2009) Variation in salivary protein composition related to feeding behavior and its ecological implications. In: Zhang W, Liu H (eds) Behavioral and chemical ecology. Nova Science Publishers Inc., New York, pp 115–136Google Scholar
  80. Salles C, Chagnon MC, Feron G, Guichard E, Laboure H, Morzel M, Semon E, Tarrega A, Yven C (2011) In-mouth mechanisms leading to flavor release and perception. Crit Rev Food Sci Nutr 51:67–90. doi: 10.1080/10408390903044693 PubMedCrossRefGoogle Scholar
  81. Salt CA, Mayes RW, Colgrove PM, Lamb CS (1994) The effects of season and diet composition on the radiocaesium intake by sheep grazing on heather moorland. J Appl Ecol 31:125–136CrossRefGoogle Scholar
  82. Scocco P, Sparvoli D, Catorci A (2006) Evaluation of the Italian Apennine ecosystems with respect to anatomical and ethological characteristics of the roe deer. In: Gafta D, Gafta D, Akeroyd J (eds) Nature conservation, concepts and practice. Springer, Berlin, pp 328–335. doi: 10.1007/978-3-540-47229-2_32 CrossRefGoogle Scholar
  83. Scocco P, Aralla M, Catorci A, Belardinelli C, Arrighi S (2011) Immunodetection of aquaporin 5 in sheep salivary glands related to pasture vegetative cycle. Folia Histochem Cytobiol 49:458–464. doi: 10.5603/FHC 2011.0065PubMedCrossRefGoogle Scholar
  84. Seligman NG (1996) Management of Mediterranean grasslands. In: Hodgson J, Illius AW (eds) The ecology and management of grazing systems. CAB International, Wallingford, pp 359–392Google Scholar
  85. Shimada T (2006) Salivary proteins as a defense against dietary tannins. J Chem Ecol 32:1149–1163. doi: 10.1007/s10886-006-9077-0 PubMedCrossRefGoogle Scholar
  86. Specht RL, Rundel PW (1990) Sclerophylly and foliar nutrient status of Mediterranean-climate plant communities in Southern Australia. Aust J Bot 38:459–474. doi: 10.1071/BT9900459 CrossRefGoogle Scholar
  87. Spielmann N, Wong DT (2011) Saliva: diagnostics and therapeutic perspectives. Oral Dis 17:345–354. doi: 10.1111/j.1601-0825.2010.01773.x PubMedCrossRefGoogle Scholar
  88. Stolte M, Ito S (1996) A comparative ultrastructural study of the parotid gland acinar cells of nine wild ruminant species (mammalian, artiodactyla). Eur J Morphol 34:79–85PubMedCrossRefGoogle Scholar
  89. Vaithiyanathan S, Mishra JP, Sheikh Q, Kumar R (2001) Salivary glands tannins binding proteins of sheep and goat. Indian J Anim Sci 71:1131–1134Google Scholar
  90. Vaz M, Maroco J, Ribeiro N, Gazarini LC, Pereira JS, Chaves MM (2010) Leaf-level responses to light in two co-occurring Quercus (Quercus ilex and Quercus suber): leaf structure, chemical composition and photosynthesis. Agrofor Syst 82:173–181. doi: 10.1007/s10457-010-9343-6 CrossRefGoogle Scholar
  91. Yisehak K, Becker A, Rothman JM, Dierenfeld ES, Marescau B, Bosch G, Hendriks W, Janssens GPJ (2012) Amino acid profile of salivary proteins and plasmatic trace mineral response to dietary condensed tannins in free-ranging zebu cattle (Bos indicus) as a marker of habitat degradation. Livest Sci 144:275–280. doi: 10.1016/j.livsci.2011.12.020 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Maria Isabel Ferraz de Oliveira
    • 1
    Email author
  • Elsa Lamy
    • 2
  • Miguel N. Bugalho
    • 3
  • Margarida Vaz
    • 4
  • Cristina Pinheiro
    • 5
  • Manuel Cancela d’Abreu
    • 5
  • Fernando Capela e Silva
    • 4
  • Elvira Sales-Baptista
    • 5
  1. 1.Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM)Universidade de ÉvoraÉvoraPortugal
  2. 2.ICAAM and Química Orgânica, Produtos Naturais e Agro-Alimentares (QOPNA)Universidade de AveiroAveiroPortugal
  3. 3.Centro de Ecologia Aplicada Prof. Baeta NevesInstituto Superior AgronomiaLisbonPortugal
  4. 4.ICAAM and Departamento de BiologiaUniversidade de ÉvoraÉvoraPortugal
  5. 5.ICAAM and Departamento de ZootecniaUniversidade de ÉvoraÉvoraPortugal

Personalised recommendations