Agroforestry Systems

, Volume 88, Issue 6, pp 1117–1132 | Cite as

Carbon stocks, tree diversity, and the role of organic certification in different cocoa production systems in Alto Beni, Bolivia

  • Johanna JacobiEmail author
  • Christian Andres
  • Monika Schneider
  • Maria Pillco
  • Patricia Calizaya
  • Stephan Rist


This study compares aboveground and belowground carbon stocks and tree diversity in different cocoa cultivation systems in Bolivia: monoculture, simple agroforestry, and successional agroforestry, as well as fallow as a control. Since diversified, agroforestry-based cultivation systems are often considered important for sustainable development, we also evaluated the links between carbon stocks and tree diversity, as well as the role of organic certification in transitioning from monoculture to agroforestry. Biomass, tree diversity, and soil physiochemical parameters were sampled in 15 plots measuring 48 × 48 m. Semi-structured interviews with 52 cocoa farmers were used to evaluate the role of organic certification and farmers’ organizations (e.g., cocoa cooperatives) in promoting tree diversity. Total carbon stocks in simple agroforestry systems (128.4 ± 20 Mg ha−1) were similar to those on fallow plots (125.2 ± 10 Mg ha−1). Successional agroforestry systems had the highest carbon stocks (143.7 ± 5.3 Mg ha−1). Monocultures stored significantly less carbon than all other systems (86.3 ± 4.0 Mg ha−1, posterior probability P(Diff > 0) of 0.000–0.006). Among shade tree species, Schizolobium amazonicum, Centrolobium ochroxylum, and Anadenanthera sp. accumulated the most biomass. High-value timber species (S. amazonicum, C. ochroxylum, Amburana cearensis, and Swietenia macrophylla) accounted for 22.0 % of shade tree biomass. The Shannon index and tree species richness were highest in successional agroforestry systems. Cocoa plots on certified organic farms displayed significantly higher tree species richness than plots on non-certified farms. Thus, expanding the coverage of organic farmers’ organizations may be an effective strategy for fostering transitions from monoculture to agroforestry systems.


Successional agroforestry Theobroma cacao Agrobiodiversity Biomass Carbon stocks Organic agriculture Bolivia 



The authors would like to thank DITSL for financing a pre-study, the NCCR NorthSouth program (Research Project 13) for supervision, AVINA Foundation for initial funding, KFPE Bern for financing an Echange Universitaire project with students from Bolivia, FiBL (Andreas Gattinger and Franco Weibel), the Planet Action program, DigitalGlobe, the Centre for Development and Environment (Anne Zimmermann, Anu Lannen), ECOTOP (Joachim Milz), the Facultad de Agronomía (Fanny Suxo) and Instituto de Ecología UMSA La Paz (Renate Seidel and Miguel Limachi), the foundation PIAF-El Ceibo (Vladimiro Mendieta and Ernesto Huanca), and two anonymous reviewers for their helpful comments.


  1. Abruzzese R, Stoian D, Somarriba E (2005) Estrategias de vida de productores emprendedores y desarrollo empresarial rural en el Alto Beni, Bolivia. Agroforestería en las Américas 43–44:28–32Google Scholar
  2. Andrade H, Ibrahim M (2003) Cómo monitorear el secuestro de carbono en los sistemas silvopastoriles? Agroforestería en las Américas 10:109–116Google Scholar
  3. Andrade H, Segura M, Somarriba E, Villalobos M (2008) Valoración biofísica y financiera de la fijación de carbono por uso del suelo en fincas cacaoteras indígenas de Talamanca, Costa Rica. Agroforestería en las Américas 46:45–50Google Scholar
  4. Asare R (2006) A review on cocoa agroforestry as a means for biodiversity conservation. Paper presented at the World Cocoa Foundation Partnership Conference, May 2006, BrusselsGoogle Scholar
  5. Bernaards C, Jennrich R (2012) GPArotation: GPA Factor Rotation. R package Version: 2012.3-1. Available from: Accessed 15 Dec 2012
  6. Bhagwat SA, Willis KJ, Birks HJ, Whittaker RJ (2008) Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evol 23(5):261–267PubMedCrossRefGoogle Scholar
  7. Brown S (1997) Estimating biomass and biomass change of tropical forests. A primer. FAO Forestry Paper no. 134Google Scholar
  8. Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11CrossRefGoogle Scholar
  9. Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99PubMedCrossRefGoogle Scholar
  10. Clough Y, Barkmann J, Juhrbandt J, Kessler M, Wanger TC, Anshary A, Buchori D, Cicuzza D, Darras K, Putra DD, Erasmi S, Pitopang R, Schmidt C, Schulze CH, Seidel D, Steffan-Dewenter I, Stenchly K, Vidal S, Weist M, Wielgoss AC, Tscharntke T (2011) Combining high biodiversity with high yields in tropical agroforests. PNAS 108(20):8311–8316PubMedCentralPubMedCrossRefGoogle Scholar
  11. de Moraes JFL, Volkoff B, Cerri Carlos C, Bernoux M (1996) Soil properties under Amazon forest and changes due to pasture installation in Rondonia, Brazil. Geoderma 70:63–81CrossRefGoogle Scholar
  12. Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob Chang Biol 17:1658–1670CrossRefGoogle Scholar
  13. Elbers J (2002) Agrarkolonisation im Alto Beni Landschafts- und politisch-ökologische Entwicklungsforschung in einem Kolonisationsgebiet in den Tropen Boliviens. Dissertation, University of DuesseldorfGoogle Scholar
  14. European Union organic regulation (2008) Verordnung (EG) Nr. 834/2007. Accessed 17 Jan 2013
  15. FAO (2011) Organic agriculture and climate change mitigation—a report of the round table on organic agriculture and climate change, RomeGoogle Scholar
  16. Gattinger A, Muller A, Haeni M, Skinner C, Fliessbach A, Buchmann N, Mäder P, Stolze M, Smit P, Scialabba N, Niggli U (2012) Enhanced top soil carbon stocks under organic farming. PNAS 109(44):18226–18231PubMedCentralPubMedCrossRefGoogle Scholar
  17. Gelman A, Hill J, Yajima M (2012) Why we (usually) don’t have to worry about multiple comparisons. J Res Educ Eff 5:189–211Google Scholar
  18. Haeger A (2012) The effects of management and plant diversity on carbon storage in coffee agroforestry systems in Costa Rica. Agrofor Syst 86(2):159–174CrossRefGoogle Scholar
  19. Haggar J, Barrios M, Bolaños M, Merlo M, Moranga P, Munguia R, Ponce A, Romero S, Soto G, Staver C, de MF Virginio E (2011) Coffee agroecosystem performance under full sun, shade, conventional and organic management regimes in Central America. Agrofor Syst 82:285–301CrossRefGoogle Scholar
  20. Hairiah K, Sitompul SM, van Noordwijk M, Palm C (2001) Methods for sampling carbon stocks above and below ground. ASB Lecture Note 4B, BogorGoogle Scholar
  21. Henry M, Tittonell P, Manlay RJ, Bernoux M, Albrecht A, Vanlauwe B (2009) Biodiversity, carbon stocks and sequestration potential in aboveground biomass in smallholder farming systems of western Kenya. Agric Ecosyst Environ 129:238–252CrossRefGoogle Scholar
  22. ICRAF (2005) Tree diversity analysis—a manual and software for common statistical methods for ecological and biodiversity studies, NairobiGoogle Scholar
  23. ICRAF (2011) Wood Density Database. World Agroforestry Centre, http://wwww.orldagroforestrycentreorg/sea/Products/AFDbases/WD. Accessed 15 Nov 2011
  24. Ifejika Speranza C (2010) Resilient adaptation to climate change in African agriculture. DIE Studies, BonnGoogle Scholar
  25. IFOAM (2005) The IFOAM Norms for organic production and processing. Accessed 2 Dec 2011
  26. IPCC (2003) Good practice guidance for land use, land-use change and forestry. IPCC National Greenhouse Gas Inventories Programme, HayamaGoogle Scholar
  27. IPCC (2007) Climate Change 2007—synthesis report, GenevaGoogle Scholar
  28. Jacobi J, Schneider M, Bottazzi P, Pillco M, Calizaya P, Rist S (2013) Agroecosystem resilience and farmers’ perceptions of climate change impacts in cocoa farms in Alto Beni, Bolivia. Renw Agr Food Syst, online firstGoogle Scholar
  29. Koepke U (2008) Organic agriculture in the tropics and subtropics. Tropical series, 1, Köster, BerlinGoogle Scholar
  30. Leifeld J, Fuhrer J (2010) Organic farming and soil carbon sequestration: what do we really know about the benefits? Ambio 39:585–599PubMedCentralPubMedCrossRefGoogle Scholar
  31. Milz J (2010) Producción de Naranja (Cirtucus sinensis) en sistemas agroforestales sucesionales en Alto Beni, Bolivia—Estudio de caso. In: Beck S (ed) Biodiversidad y Ecología en Bolivia. Instituto de Ecología, Universidad Mayor de San Andrés (UMSA), La Paz, pp 324–340Google Scholar
  32. Miranda M, Somarriba E (2005) Evaluación agronómica de las plantaciones de cacao injertado de productores de la Central de Cooperativas El Ceibo, Alto Beni, Bolivia. Agroforestería en las Américas 43–44:62–66Google Scholar
  33. Mueller-Lindenlauf M (2009) Organic agriculture and carbon sequestration. Possibilities and constraints for the consideration of organic agriculture within carbon accounting systems. FAO, RomeGoogle Scholar
  34. Myers N, Mittermeier RA, Mittermeyer CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  35. Nair PKR (2011) Carbon sequestration studies in agroforestry systems: a reality-check. Agrofor Syst 86:1–11Google Scholar
  36. Nair PKR, Kumar BM, Nair VD (2009a) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23CrossRefGoogle Scholar
  37. Nair PKR, Nair VD, Mohan KB, Haile S (2009b) Soil carbon sequestration in tropical agroforestry systems: a feasibility appraisal. Environ Sci Policy 12:1099–1111CrossRefGoogle Scholar
  38. Niggli U, Schmid H, Fliessbach A (2007) Organic farming and climate change. Briefing prepared by the Research Institute of Organic Agriculture FiBL, Frick, Switzerland, for the International Trade Centre ITC, GenevaGoogle Scholar
  39. Noponen MRA, Edward-Jones G, Haggar JP, Soto G, Attarzadeh N, Healey JR (2012) Greenhouse gas emissions in coffee grown with differing input levels under conventional and organic management. Agric Ecosyst Environ 151:6–15CrossRefGoogle Scholar
  40. Orozco L, Somarriba E (2005) Árboles maderables en fincas de cacao orgánico del Alto Beni, Bolivia. Agroforestería en las Américas 34–44:46–53Google Scholar
  41. Ortiz M, Somarriba E (2005) Sombra y especies arbóreas en cacaotales del Alto Beni, Bolivia. Agroforestería en las Américas 43–44:54–61Google Scholar
  42. Patton MQ (2002) Qualitative evaluation and research methods. Sage, Beverly HillsGoogle Scholar
  43. Pearson T, Walker S, Brown S (2005) Sourcebook for land use, land-use change and forestry projects. World Bank BioCarbon Fund and Winrock International, WashingtonGoogle Scholar
  44. Philpott SM, Bichier P, Rice R, Greenberg R (2007) Field-testing ecological and economic benefits of coffee certification programs. Conserv Biol 21(4):975–985PubMedCrossRefGoogle Scholar
  45. Pinto W (2011) Clasificación orientada a objetos con imágenes de alta resolución para la determinación de la cobertura y uso del suelo en la región de Alto Beni, Bolivia, Master’s thesis, Universidad Mayor de San Simón, CochabambaGoogle Scholar
  46. Quelca A, Bentes-Gama M, Pastrana A, Ochoa R (2005) Percepciones y valoración del sistema sucesional multiestrato de los productores cacaoteros del Alto Beni, Bolivia. Agroforestería en las Américas 43–44:77–80Google Scholar
  47. R Development Core Team (2012) R: a language and environment for statistical computing. ViennaGoogle Scholar
  48. Ramirez OA, Somarriba E (2000) Risk and returns of diversified cropping systems under nonnormal, cross-, and autocorrelated commodity price structures. J Agric Res Econ 25(2):653–668Google Scholar
  49. Revelle W (2012) psych: procedures for psychological, psychometric, and personality research. R package Version 1.2.8. Available from: Accessed 15 Dec 2012
  50. Rice R, Greenberg A (2000) Cacao cultivation and the conservation of biological diversity. Ambio 29(3):167–173Google Scholar
  51. Roncal-García S, Soto-Pinto L, Castellanos-Albores J, Ramírez-Marcial N, de Jong B (2008) Sistemas Agroforestales y Almacenamiento de Carbono en Comunidades Indígenas de Chiapas. Mexico. Interciencia 33(3):7Google Scholar
  52. Santos S, Miranda I, Tourinho M (2004) Biomass estimation of agroforestry systems of the Juba river floodplain in Cametá, Pará. Acta Amazonica 34(1):1–8CrossRefGoogle Scholar
  53. Schroth G, Sinclair FL (eds) (2003) Trees, crops and soil fertility: concepts and research methods. CABI, BangorGoogle Scholar
  54. Schulz J (2011) Imitating natural ecosystems through successional agroforestry for the regeneration of degraded lands—a case study of smallholder agriculture in northeastern Brazil. In: Smith J et al (eds) Agroforestry as a tool for landscape restoration. Nova Science Publishers, New York, pp 3–17Google Scholar
  55. Schulz B, Becker B, Götsch E (1994) Indigenous knowledge in a “modern” sustainable agroforestry system—a case study from Brazil. Agrofor Syst 25:59–69CrossRefGoogle Scholar
  56. Scialabba NE-H, Mueller-Lindenlauf M (2010) Organic agriculture and climate change. Renew Agric Food Syst 25(2):158–169CrossRefGoogle Scholar
  57. Segura M, Kanninen M, Suárez D (2006) Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agrofor Syst 68:143–150CrossRefGoogle Scholar
  58. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  59. Somarriba E, Beer J (2011) Productivity of Theobroma cacao agroforestry systems with timber or legume service shade trees. Agrofor Syst 81:109–121CrossRefGoogle Scholar
  60. Somarriba E, Trujillo L (2005) El proyecto Modernización de la cacaocultura orgánica del Alto Beni, Bolivia. Agroforestería en las Américas 43–44:6–14Google Scholar
  61. Somarriba E, Andrade HJ, Segura M, Villalobos M (2008) Cómo fijar carbono atmosférico, certificarlo y venderlo para complementar los ingresos de productores indígenas en Costa Rica? Agroforestería en las Américas 46:81–88Google Scholar
  62. Soto-Pinto L, Anzueto M, Mendoza J, Jimenez Ferrer G, de Jong B (2010) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor Syst 78:39–51CrossRefGoogle Scholar
  63. Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Hölscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wanger TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes—a review. J Appl Ecol 48:619–629CrossRefGoogle Scholar
  64. UNFCCC (2009) Approved simplified baseline and monitoring methodology for small-scale agroforestry—afforestation and reforestation project activities under the clean development mechanism. CDM—Executive Board AR-AMS0004, Version 02Google Scholar
  65. van Reeuwijk LP (2002) Procedures for soil analysis, 6th edn. Technical Paper 9, International Soil Reference and Information Centre, WageningenGoogle Scholar
  66. Vieira DLM, Holl KD, Peneireiro FM (2009) Agro-successional restoration as a strategy to facilitate tropical forest recovery. Restor Ecol 17(4):451–459CrossRefGoogle Scholar
  67. Yana W, Weinert H (2001) Técnicas de sistemas agroforestales multiestrato—manual práctico. PIAF-El Ceibo, La PazGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Johanna Jacobi
    • 1
    Email author
  • Christian Andres
    • 2
  • Monika Schneider
    • 2
  • Maria Pillco
    • 3
  • Patricia Calizaya
    • 4
  • Stephan Rist
    • 1
  1. 1.Centre for Development and Environment (CDE)University of BernBernSwitzerland
  2. 2.Research Institute of Organic Agriculture (FiBL)FrickSwitzerland
  3. 3.Facultad de AgronomíaUniversidad Mayor de San Andrés (UMSA)La PazBolivia
  4. 4.Fundación PIAF - El CeiboLa PazBolivia

Personalised recommendations