Agroforestry Systems

, Volume 87, Issue 4, pp 767–779 | Cite as

Coffee agrosystems: an important refuge for amphibians in central Veracruz, Mexico

  • Rene Murrieta-GalindoEmail author
  • Alberto González-Romero
  • Fabiola López-Barrera
  • Gabriela Parra-Olea


Of the most common types of land use, agroecosystems put enormous pressure on many groups of biological organisms. Amphibians are not the exception and here we show the value of these habitats to the conservation of this group. We evaluated the diversity of amphibians in coffee plantations (traditional and specialized shade) and also in fragments of cloud forest, the ecosystem that was dominant in pre-agricultural central Veracruz, Mexico. A sampling effort of 2,688 person hours recorded 1,078 amphibians belonging to 26 species, 10 families and three orders. Based on the mean complementarity of 64 %, the non-metric multidimensional scaling analysis identified three groups of communities indicating a high degree of species turnover. The Craugastoridae family was dominant at the study sites, representing 40 % of the entire sample. Amphibian diversity was high in cloud forest fragments, followed by the traditional coffee plantation. However, amphibian richness in the specialized shaded coffee plantation was not significantly different from that of the other two habitats. We conclude that the different types of coffee agrosystems are reservoirs for at least 46 % of the species native to cloud forest, indicating that this habitat is very important to the conservation of the amphibian fauna in central Veracruz.


Tropical montane cloud forest Forest conversion Agroforestry systems Coffee plantation management 



Rene Murrieta Galindo is grateful to the Consejo Nacional de Ciencia y Tecnología (CONACyT) for National Doctoral scholarship No. 165879. We thank the Dirección de Vida Silvestre office of SEMARNAT for permits SPGA/DGVS/0265 and SPGA/DGVS/05892/08 allowing us to collect, handle and free the amphibians. We are grateful to the owners of the Finca La Onza, El Mirador, Esmeralda, La Vequia, and the cloud forests, all of which are private properties, for allowing us to sample there. We also thank Ricardo Romero (“Las Cañadas”), and Orlik Gómez García (“Santuario del Bosque de Niebla”). Rene A. Murrieta Hernández, Rosalinda Castillo Hernández and Cynthia Alfaro Martínez provided valuable help in the field and three anonymous reviewers for their valuable comments and suggestions to improve the manuscript. Bianca Delfosse translated the manuscript from the original in Spanish.


  1. Aldrich M, Billington C, Edwards M, Laidlaw R (1997) Tropical montane cloud forests: an urgent priority for conservation. WCMC Biodivers Bull 2:1–14Google Scholar
  2. Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–20. doi: 10.1111/j.1461-0248.2010.01552.x PubMedCrossRefGoogle Scholar
  3. Araujo MB, Nogues-Bravo D, Reginster I, Rounsevell M, Whittaker RJ (2008) Exposure of European biodiversity to changes in human-induced pressures. Environ Sci Policy 11:38–45. doi: 10.1016/j.envsci.2007.07.002 CrossRefGoogle Scholar
  4. Baillie JEM, Hilton-Taylor C, Stuart SN (2004) IUCN Red List of threatened species. A global species assessment. IUCN, Gland/CambridgeCrossRefGoogle Scholar
  5. Blaustein AR, Bancroft BA (2007) Amphibian population declines: evolutionary considerations. Bioscience 57:437–444. doi: 10.1641/b570517 CrossRefGoogle Scholar
  6. Bubb P, May I, Miles L, Sayer J (2004) Cloud forest agenda. UNEP-WCMC, CambridgeGoogle Scholar
  7. Campbell JA (1999) Amphibians and reptiles of northern Guatemala, the Yucatán, and Belize. University of Oklahoma Press, NormanGoogle Scholar
  8. Challenger A, Dirzo R (2009) Factores de cambio y estado de la biodiversidad. In: Sarukhán J, Soberón J (eds) Capital natural de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), México, pp 37–73Google Scholar
  9. Colwell RK (2009) EstimateS: statistical estimation of species richness and shared species from samples, version 8.2.
  10. Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos T R Soc A Biol Sci 345:101–118CrossRefGoogle Scholar
  11. CONABIO (2010) El Bosque Mesófilo de Montaña en México: Amenazas y Oportunidades para su Conservación y Manejo Sostenible. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, MéxicoGoogle Scholar
  12. CONABIO (2011) Norma Oficial Mexicana NOM-059-SEMARNAT-2001, Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. CONABIO, MéxicoGoogle Scholar
  13. Crump ML, Scott NJ Jr (1994) Visual encounter surveys. In: Heyer WR, Donnelley MA, McDiarmid RW, Hayek LC, Foster MS (eds) Measuring and monitoring biological diversity: standard methods for amphibians. Smithsonian Institution Press, Washington, DC, pp 84–91Google Scholar
  14. Duellman WE, Trueb L (1994) Biology of amphibians. Johns Hopkins, BaltimoreGoogle Scholar
  15. Estrada CG, Damon A, Hernandez CS, Pinto LS, Nunez GI (2006) Bat diversity in montane rainforest and shaded coffee under different management regimes in southeastern Chiapas, Mexico. Biol Conserv 132:351–361. doi: 10.1016/j.biocon.2006.04.027 CrossRefGoogle Scholar
  16. Faria D, Paciencia MLB, Dixo M, Laps RR, Baumgarten J (2007) Ferns, frogs, lizards, birds and bats in forest fragments and shade cacao plantations in two contrasting landscapes in the Atlantic forest, Brazil. Biodivers Conserv 16:2335–2357. doi: 10.1007/s10531-007-9189-z CrossRefGoogle Scholar
  17. Flores-Palacios A, Valencia-Díaz S (2007) Local illegal trade reveals unknown diversity and involves a high species richness of wild vascular epiphytes. Biol Conserv 136(3):372–387. doi: 10.1016/j.biocon.2006.12.017 Google Scholar
  18. Frias-Alvarez P, Vredenburg VT, Familiar-Lopez M, Longcore JE, Gonzalez-Bernal E, Santos-Barrera G, Zambrano L, Parra-Olea G (2008) Chytridiomycosis survey in wild and captive Mexican amphibians. EcoHealth 5:18–26. doi: 10.1007/s10393-008-0155-3 PubMedCrossRefGoogle Scholar
  19. Haeckel I (2006) Firewood use, supply, and harvesting impact in cloud forests of central Veracruz, Mexico. BSc Thesis, Columbia University, New YorkGoogle Scholar
  20. Halffter G (1998) A strategy for measuring landscape biodiversity. Biol Int 36:3–17Google Scholar
  21. Halladay P, Gilmour DA (1995) Conserving biodiversity outside protected areas: the role of traditional agro-ecosystems. IUCN—The World Conservation Union, GlandGoogle Scholar
  22. Hammer Ø, Harper DAT, Ryan PD (2010) PAST: paleontological statistics software package for education and data analysis, version 2.01Google Scholar
  23. Henderson PA, Magurran AE (2010) Linking species abundance distributions in numerical abundance and biomass through simple assumptions about community structure. P Roy Soc B Biol Sci 277:1561–1570. doi: 10.1098/rspb.2009.2189 CrossRefGoogle Scholar
  24. Jose S (2011) Managing native and non-native plants in agroforestry systems. Agrofor Syst 83:101–105. doi: 10.1007/s10457-011-9440-1 CrossRefGoogle Scholar
  25. Jose S, Gillespie AR, Pallardy SG (2004) Interspecific interactions in temperate agroforestry. Agrofor Syst 61:237–255. doi: 10.1023/B:AGFO.0000029002.85273.9b CrossRefGoogle Scholar
  26. Kolozsvary MB, Swihart RK (1999) Habitat fragmentation and the distribution of amphibians: patch and landscape correlates in farmland. Can J Zool 77:1288–1299CrossRefGoogle Scholar
  27. Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science Ltd., AmsterdamGoogle Scholar
  28. Lips KR (1998) Decline of a tropical montane amphibian fauna. Conserv Biol 12:106–117CrossRefGoogle Scholar
  29. Lips KR, Mendelson JR, Munoz-Alonso A, Canseco-Marquez L, Mulcahy DG (2004) Amphibian population declines in montane southern Mexico: resurveys of historical localities. Biol Conserv 119:555–564. doi: 10.1016/j.biocon.2004.01.017 CrossRefGoogle Scholar
  30. Macip-Ríos R, Casas-Andreu G (2008) Los cafetales en México y su importancia para la conservación de los anfibios y reptiles. Acta Zool Mex (ns) 24:143–159Google Scholar
  31. Magurran AE (2004) Measuring biological diversity. Wiley-Blackwell, New YorkGoogle Scholar
  32. Manson RH, Mehltreter K, Gallina S, Ortiz VH (2008) Agroecosistemas cafetaleros de Veracruz. Instituto de Ecología A.C. e Instituto Nacional de Ecología, XalapaGoogle Scholar
  33. Marsh DM, Pearman PB (1997) Effects of habitat fragmentation on the abundance of two species of Leptodactylid frogs in an Andean montane forest. Conserv Biol 11:1323–1328CrossRefGoogle Scholar
  34. Mehltreter M, González-Gálvez JL (2006) Base de Datos del Proyecto BIOCAFE II. Versión 2.0. Instituto de Ecología A.C., XalapaGoogle Scholar
  35. Michon G, de Foresta H (1995) The Indonesian agroforest model. Forest resource management and biodiversity conservation. In: Halladay P, Gilmour DA (eds) Conserving biodiversity outside protected areas: the role of traditional agro-ecosystems. International Union for Conservation of Nature—The World Conservation Union, Washington, DC, pp 90–106Google Scholar
  36. Moguel P, Toledo VM (2004) Conservar produciendo: Biodiversidad, café orgánico y jardines productivos. Biodiversitas 57:2–7Google Scholar
  37. Muñoz-Villers LE, López-Blanco J (2008) Land use/cover changes using Landsat TM/ETM images in a tropical and biodiverse mountainous area of central-eastern Mexico. Int J Remote Sens 29:71–93. doi: 10.1080/01431160701280967 CrossRefGoogle Scholar
  38. Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62PubMedCrossRefGoogle Scholar
  39. Ochoa–Ochoa LM, Flores-Villela O (2006) Áreas de diversidad y endemismo de la herpetofauna mexicana. Universidad Nacional Autónoma de México, MéxicoGoogle Scholar
  40. Ochoa–Ochoa L, Urbina-Cardona JN, Vazquez LB, Flores-Villela O, Bezaury-Creel J (2009) The effects of governmental protected areas and social initiatives for land protection on the conservation of Mexican amphibians. PLoS ONE 4:e6878. doi: 10.1371/journal.pone.0006878 PubMedCrossRefGoogle Scholar
  41. Parra-Olea G, Rovito SM, Márquez-Valdelamar L, Cruz G, Murrieta-Galindo R, Wake D (2010) A new species of Pseudoeurycea from the cloud forest in Veracruz, México. Zootaxa 2725:57–68Google Scholar
  42. Pearman PB (1997) Correlates of amphibian diversity in an altered landscape of Amazonian Ecuador. Conserv Biol 11:1211–1225CrossRefGoogle Scholar
  43. Perfecto I, Armbrecht I (2003) The coffee agrosystem in the neotropics: combining ecological and economic goals. Tropical agrosystems. CRC Press, Washington, DCGoogle Scholar
  44. Pineda E, Halffter G (2004) Species diversity and habitat fragmentation: frogs in a tropical montane landscape in Mexico. Biol Conserv 117:499–508. doi: 10.1016/j.biocon.2003.08.009 CrossRefGoogle Scholar
  45. Pineda E, Moreno C, Escobar F, Halffter G (2005) Frog, bat, and dung beetle diversity in the cloud forest and coffee agroecosystems of Veracruz, Mexico. Conserv Biol 19:400–410CrossRefGoogle Scholar
  46. Pounds JA, Crump ML (1994) Amphibian declines and climate disturbance: the case of the golden toad and the harlequin frog. Conserv Biol 8:72–85CrossRefGoogle Scholar
  47. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  48. R Development Core Team (2011) R: a language and environment for statistical computing, version 2.13.1. R Foundation for Statistical Computing, ViennaGoogle Scholar
  49. Rovito SM, Parra-Olea G, Vasquez-Almazan CR, Papenfuss TJ, Wake DB (2009) Dramatic declines in neotropical salamander populations are an important part of the global amphibian crisis. P Natl Acad Sci USA 106:3231–3236. doi: 10.1073/pnas.0813051106 CrossRefGoogle Scholar
  50. Rzedowski J, Ramamoorthy TP, Bye RA, Lot A, Fa JE (1993) Diversity and origins of the phanerogamic flora of Mexico. Biological diversity of Mexico: origins and distribution. Oxford University Press, Oxford, pp 129–144Google Scholar
  51. Santos-Barrera G, Urbina-Cardona N (2011) The role of the matrix-edge dynamics of amphibian conservation in tropical montane fragmented landscapes. Rev Mex Biodivers 82:679–687Google Scholar
  52. Soberón MJ, Llorente BJ (1993) The use of species accumulation functions for the prediction of species richness. Conserv Biol 7:480–488CrossRefGoogle Scholar
  53. Soto EM, Gómez C (1990) Atlas climático del municipio de Xalapa. Instituto de Ecología AC, XalapaGoogle Scholar
  54. Statsof Inc. (2001) STATISTICA (data analysis software system), version 7. Statsoft Inc., TulsaGoogle Scholar
  55. Stebbins RC, Cohen NW (1997) A natural history of amphibians. Princeton University Press, PrincetonGoogle Scholar
  56. Toledo-Aceves T, Meave JA, Gonzalez-Espinosa M, Ramirez-Marcial N (2011) Tropical montane cloud forests: current threats and opportunities for their conservation and sustainable management in Mexico. J Environ Manage 92:974–981PubMedCrossRefGoogle Scholar
  57. Toral E, Feinsinger P, Crump ML (2002) Frogs and a cloud-forest edge in Ecuador. Conserv Biol 16:735–744CrossRefGoogle Scholar
  58. Urbina-Cardona JN, Flores-Villela O (2010) Ecological-niche modeling and prioritization of conservation-area networks for Mexican herpetofauna. Conserv Biol 24:1031–1041. doi: 10.1111/j.1523-1739.2009.01432.x PubMedCrossRefGoogle Scholar
  59. Vandermeer J, Perfecto I (2007) The agricultural matrix and a future paradigm for conservation. Conserv Biol 21:274–277PubMedCrossRefGoogle Scholar
  60. Villaseñor JL (2010) El bosque húmedo de montaña en México y sus plantas vasculares: catálogo florístico-taxonómico. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad—Universidad Nacional Autónoma de México, MéxicoGoogle Scholar
  61. Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc Natl Acad Sci USA 105:11466–11473. doi: 10.1073/pnas.0801921105 PubMedCrossRefGoogle Scholar
  62. Warnes MGR (2009) Package ‘gmodels’. R Foundation for Statistical Computing, ViennaGoogle Scholar
  63. Wiegand T, Huth A, Getzin S, Wang X, Hao Z, Gunatilleke CV, Gunatilleke IAU (2012) Testing the independent species’ arrangement assertion made by theories of stochastic geometry of biodiversity. Proc R Soc B Biol Sci. doi: 10.1098/rspb.2012.0376 Google Scholar
  64. Williams-Linera G (2007) El bosque de niebla del centro de Veracruz. Ecología, historia y destino en tiempos de fragmentación y cambio climático. CONABIO-Instituto de Ecología AC, XalapaGoogle Scholar
  65. Young BE, Stuart SN, Chanson JS, Cox NA, Boucher TM (2005) Disappearing jewels: the status of new world amphibians. Appl Herpetol 2:429–435CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Rene Murrieta-Galindo
    • 1
    Email author
  • Alberto González-Romero
    • 1
  • Fabiola López-Barrera
    • 2
  • Gabriela Parra-Olea
    • 3
  1. 1.Red de Biología y Conservación de VertebradosInstituto de EcologíaXalapaMexico
  2. 2.Red de Ecología FuncionalInstituto de EcologíaXalapaMexico
  3. 3.Departamento de Zoología, Instituto de BiologíaUNAMMéxicoMexico

Personalised recommendations