Agroforestry Systems

, Volume 86, Issue 2, pp 141–157 | Cite as

Carbon stocks in coffee agroforests and mixed dry tropical forests in the western highlands of Guatemala

  • Mikaela Schmitt-Harsh
  • Tom P. Evans
  • Edwin Castellanos
  • J. C. Randolph


Tree removal in Latin American coffee agroforestry systems has been widespread due to complex and interacting factors that include fluctuating international markets, government-supported agricultural policies, and climate change. Despite shade tree removal and land conversion risks, there is currently no widespread policy incentive encouraging the maintenance of shade trees for the benefit of carbon sequestration. In facilitation of such incentives, an understanding of the capacity of coffee agroforests to store carbon relative to tropical forests must be developed. Drawing on ecological inventories conducted in 2007 and 2010 in the Lake Atitlán region of Guatemala, this research examines the carbon pools of smallholder coffee agroforests (CAFs) as they compare to a mixed dry forest (MDF) system. Data from 61 plots, covering a total area of 2.24 ha, was used to assess the aboveground, coarse root, and soil carbon reservoirs of the two land-use systems. Results of this research demonstrate the total carbon stocks of CAFs to range from 74.0 to 259.0 Megagrams (Mg) C ha−1 with a mean of 127.6 ± 6.6 (SE) Mg C ha¹. The average carbon stocks of CAFs was significantly lower than estimated for the MDF (198.7 ± 32.1 Mg C ha−1); however, individual tree and soil pools were not significantly different suggesting that agroforest shade trees play an important role in facilitating carbon sequestration and soil conservation. This research demonstrates the need for conservation-based initiatives which recognize the carbon sequestration benefits of coffee agroforests alongside natural forest systems.


Shade-grown coffee Agroforestry Carbon Land conversion 



This research was funded by the National Science Foundation’s Geography and Spatial Sciences Program (DDRI #0927491). Many thanks to the smallholder coffee growers in Guatemala who graciously allowed us to collect data on their land during harvesting season and to the community of Santa Clara for allowing access to their municipal park. We also thank Arturo Ujpán Mendoza at Ati’t Ala’ for his help collecting field data, Gabriela Alfaro at the Universidad del Valle de Guatemala for her help with data analysis, and Sarah Mincey at Indiana University for her comments and suggestions on the manuscript.


  1. ANACAFÉ (Asociación Nacional del Café de Guatemala) (2008) Green book: Guatemalan coffees. ANACAFÉ, Guatemala City. Accessed 12 December 2011
  2. Ávalos-Sartio B, Blackman A (2010) Agroforestry price supports as a conservation tool: Mexican shade coffee. Agrofor Syst 78:169–183CrossRefGoogle Scholar
  3. Ávila G, Jiménez F, Beer J, Gómez M, Ibrahim M (2001) Almacenamiento, fijación de carbono y valoración de servicios ambientales en sistemas agroforestales en Costa Rica. Agroforestería en las Américas 8(30):32–35Google Scholar
  4. Bacon C (2005) Confronting the coffee crisis: can fair trade, organic, and specialty coffees reduce small-scale farmer vulnerability in Northern Nicaragua? World Dev 33(3):497–511CrossRefGoogle Scholar
  5. Balloffet NM, Martin AS (2007) Governance trends in protected areas: experiences from the parks in peril program in Latin America and the Caribbean. Parks in peril innovations in conservation series. The Nature Conservancy, ArlingtonGoogle Scholar
  6. Bandeira FP, Martorell C, Meave JA, Caballero J (2005) The role of rustic coffee plantations in the conservation of wild tree diversity in the Chinantec region of Mexico. Biodivers Conserv 14:1225–1240CrossRefGoogle Scholar
  7. Bennett E, Peterson G, Gordon L (2009) Understanding relationships among multiple ecosystem services. Ecol Lett 12:1–11CrossRefGoogle Scholar
  8. Bhagwat SA, Willis KJ, Birks HJB, Whittaker RJ (2008) Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evol 23(5):261–267PubMedCrossRefGoogle Scholar
  9. Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper No. 134. Rome, ItalyGoogle Scholar
  10. Brown S (2002a) Measuring carbon in forests: current status and future challenges. Environ Pollut 116(3):363–372PubMedCrossRefGoogle Scholar
  11. Brown S (2002b) Measuring, monitoring, and verification of carbon benefits for forest-based projects. Philos Trans R Soc Lond A 360:1669–1783CrossRefGoogle Scholar
  12. Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11CrossRefGoogle Scholar
  13. Castellanos E, Bonilla C, Quilo A (2007) Cuantificación de Carbono Capturado por Bosques Comunales y Municipales de Cinco Municipios en los Departamentos de San Marcos y Huehuetenango. Proyecto AGROCYT No. 051-2004. Centro de Estudios Ambientales y de Biodiversidad, y Universidad del Valle de Guatemala, Guatemala CityGoogle Scholar
  14. Castellanos E, Quilo A, Pons D (2010) Estudio de Línea Base de Carbono en Cafetales. Centro de Estudios Ambientales y de Biodiversidad, y Universidad del Valle de Guatemala, Guatemala CityGoogle Scholar
  15. Castellanos E, Quilo A, Amboage RM (2011) Validation of the Methodology used by Universidad del Valle de Guatemala for the Estimation of the Carbon Content in Forests and Agroforestry Systems of Guatemala. Centro de Estudios Ambientales y de Biodiversidad, y Universidad del Valle de Guatemala y CARE, Guatemala CityGoogle Scholar
  16. CEAB (Centro de Estudios Ambientales y de Biodiversidad) (unpublished results) Plan de Manejo 2003–2007: Parque Regional Municipal Chuiraxamoló, Santa Clara La Laguna, SololáGoogle Scholar
  17. Chave J, Condit R, Lao S, Caspersen JP, Foster RB, Hubbell SP (2003) Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. J Ecol 91:240–252CrossRefGoogle Scholar
  18. Condit R (1998) Tropical forest census plots. Springer, BerlinGoogle Scholar
  19. Dossa EL, Fernandes ECM, Reid WS (2008) Above- and below-ground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation. Agrofor Syst 72:103–115CrossRefGoogle Scholar
  20. Eakin H, Tucker C, Castellanos E (2005) Market shocks and climate variability: the coffee crisis in Mexico, Guatemala, and Honduras. Mt Res Devel 25(4):304–309CrossRefGoogle Scholar
  21. Eakin H, Tucker C, Castellanos E (2006) Responding to the coffee crisis: a pilot study of farmers’ adaptations in Mexico, Guatemala and Honduras. Geogr J 172(2):156–171CrossRefGoogle Scholar
  22. Ellis EA, Baerenklau KA, Marcos-Martínez R, Chávez E (2010) Land use/land cover change dynamics and drivers in a low-grade marginal coffee growing region of Veracruz, Mexico. Agrofor Syst 80:61–84CrossRefGoogle Scholar
  23. Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436(4):686–688PubMedCrossRefGoogle Scholar
  24. FAO (Food and Agriculture Organization of the United Nations) (2002) LocClim: FAO local climate estimator. CD-ROM, Version 1.0. Information Division, FAO, Rome, ItalyGoogle Scholar
  25. FAO (Food and Agriculture Organization of the United Nations) (2006) Guidelines for soil description, 4th edn. Information Division, FAO, RomeGoogle Scholar
  26. FAO (Food and Agriculture Organization of the United Nations) (2009) FAOSTAT: production\crops. Accessed 12 December 2011
  27. Fearnside PM, Barbosa RI (1998) Soil carbon changes from conversion of forest to pasture in Brazilian Amazonia. For Ecol Manag 108:147–166CrossRefGoogle Scholar
  28. Greenberg R, Bichier P, Sterling J (1997) Bird populations in rustic and planted shade coffee plantations of Eastern Chiapas, Mexico. Biotropica 29(4):501–514CrossRefGoogle Scholar
  29. Harmand JM, Hergoualc’h K, de Miguel S, Dzib B, Siles P, Vaast P (2006) Carbon sequestration in coffee agroforestry plantations of Central America. In: Proceedings of the 21st international conference on coffee science (ASIC). CIRAD, Montpelier, France, 11–15 September 2006Google Scholar
  30. IADB (Inter-American Development Bank), USAID, World Bank (2002) Managing the competitive transition of the coffee sector in Central America. Discussion document prepared for the regional workshop “the coffee crisis and its impact in Central America: situation and lines of action. Antigua, Guatemala, April 3–5, 2002. Accessed 12 December 2011
  31. IFRI (International Forestry Resources and Institutions) Research Program (2007) Field manual, version 13. Center for the Study of Institutions, Population, and Environmental Change, Indiana University, Bloomington, Indiana. Accessed 12 December 2011
  32. IPCC (Intergovernmental Panel on Climate Change) (2000) Special report on land use, land-use change and forestry. Cambridge University Press, CambridgeGoogle Scholar
  33. Jha S, Dick CW (2008) Shade coffee farms promote genetic diversity of native trees. Current Biol 18(24):1126–1128CrossRefGoogle Scholar
  34. Jha S, Vandermeer J (2010) Impacts of coffee agroforestry management on tropical bee communities. Biol Conserv 143:1423–1431CrossRefGoogle Scholar
  35. Jha S, Bacon CM, Philpott SM, Rice RA, Méndez VE, Läderach P (2011) A review of ecosystem services, farmer livelihoods, and value chains in shade coffee agroecosystems. In: Campbell, WB, López Ortíz S (eds) Integrating agriculture, conservation, and ecotourism: examples from the fields. Springer, Dordrecht, pp 141–208Google Scholar
  36. Ketterings QM, Coe R, van Noordwijk M, Ambagau Y, Palm CA (2001) Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For Ecol Manag 146:199–209CrossRefGoogle Scholar
  37. Kirby KR, Potvin C (2007) Variation in carbon storage among tree species: implications for the management of a small-scale carbon sink project. For Ecol Manag 246:208–221CrossRefGoogle Scholar
  38. Lewin B, Giovannucci D, Varangis P (2004) Coffee markets: new paradigms in global supply and demand. World Bank, Washington, DCGoogle Scholar
  39. MAGA (Ministerio de Agricultura, Ganadería y Alimentación) (2002) Atlas Temático de la República de Guatemala. Instituto Agropecuario Nacional, Ministerio de Agricultura de Guatemala, GuatemalaGoogle Scholar
  40. Magrin G, Gay García C, Cruz Choque D, Giménez JC, Moreno AR, Nagy GJ, Nobre C, Villamizar A (2007) Latin America. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate Change 2007: impacts, adaptation and vulnerability. contribution of working group ii to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 581–615Google Scholar
  41. Malhi Y, Aragão LEOC, Metcalfe DB, Paiva R, Quesada CA, Almeida S, Anderson L, Brando P, Chambers JQ, da Costa ACK, Hutyra LR, Oliveira P, Patino S, Pyle EH, Robertson AK, Teixeira LM (2009) Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Global Chang Biol 15:1255–1274CrossRefGoogle Scholar
  42. Mather PM (2004) Computer processing of remotely-sensed images: an introduction, 3rd edn. John Wiley & Sons, ChichesterGoogle Scholar
  43. Moguel P, Toledo VM (1999) Biodiversity conservation in traditional coffee systems of Mexico. Conserv Biol 13:11–21CrossRefGoogle Scholar
  44. Nair PK, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutri Soil Sci 172:10–23CrossRefGoogle Scholar
  45. Nakakaawa C, Aune J, Vedeld P (2009) Changes in carbon stocks and tree diversity in agro-ecosystems in south western Uganda: what role for carbon sequestration payments? New For 40(1):19–44CrossRefGoogle Scholar
  46. Neelin JD, Münnich M, Su H, Meyerson JE, Holloway CE (2006) Tropical drying trends in global warming models and observations. Proc Natl Acad Sci 103:6110–6115PubMedCrossRefGoogle Scholar
  47. Nestel D (1995) Coffee in Mexico: international market, agricultural landscape and ecology. Ecol Econ 15:165–178CrossRefGoogle Scholar
  48. Oxfam (2001) Bitter coffee: how the poor are paying for the slump in coffee prices. Accessed 20 December 2011
  49. Pearson T, Walker S, Brown S (2005) Sourcebook for land use, land-use change and forestry projects. Winrock International and the BioCarbon Fund of the World Bank, WashingtonGoogle Scholar
  50. Penman J, Gytarsky T, Hiraishi T, Krug T, Kruger D, Pipatti R, Buendia L, Miwa K, Ngara T, Tanabe K, Wagner F (2003) Good practice guidance for land use, land-use change and forestry. IPCC National Greenhouse Gas Inventories Programme and Institute for Global Environmental Strategies, Kanagawa, Japan. Accessed 12 December 2011
  51. Perfecto I, Vandermeer J (2002) Quality of agroecological matrix in a tropical montane landscape: ants in coffee plantations in Southern Mexico. Conserv Biol 16(1):174–182CrossRefGoogle Scholar
  52. Perfecto I, Rice RA, Greenberg R, van der Voort ME (1996) Shade coffee: a disappearing refuge for biodiversity. Bioscience 46(8):598–608CrossRefGoogle Scholar
  53. Perfecto I, Armbrecht I, Philpott SM, Soto-Pinto L, Dietsch TV (2007) Shaded coffee and the stability of rainforest margins in Latin America. In: Tscharntke T, Leuschner C, Zeller M, Guhadja E, Bidin A (eds) The stability of tropical rainforest margins, linking ecological, economic, and social constraints of land use and conservation. Springer, New York, pp 225–261Google Scholar
  54. Perfecto I, Vandermeer J, Wright A (2009) Nature’s matrix: linking agriculture, conservation and food sovereignty. Earthscan, LondonGoogle Scholar
  55. Philpott SM, Arendt WJ, Armbrecht I, Bichier P, Diestch TV, Gordon C, Greenberg R, Perfecto I, Reynoso-Santos R, Soto-Pinto L, Tejeda-Cruz C, Williams-Linera G, Valenzuela J, Zolotoff JM (2008) Biodiversity loss in Latin American coffee landscapes: review of the evidence on ants, birds, and trees. Conserv Biol 22(5):1093–1105PubMedCrossRefGoogle Scholar
  56. Ponte S (2002) The ‘latte revolution’? Regulation, markets and consumption in the global coffee chain. World Dev 30(7):1099–1122CrossRefGoogle Scholar
  57. Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Global Chang Biol 6:317–328CrossRefGoogle Scholar
  58. Powers JS (2004) Changes in soil carbon and nitrogen after contrasting land-use transitions in Northeastern Costa Rica. Ecosystems 7:134–146CrossRefGoogle Scholar
  59. RA (Rainforest Alliance) (2011) Finca Platanillo in Guatemala is the world’s first coffee farm to be Rainforest Alliance verified as Climate Friendly Accessed 2 January 2012
  60. Raudsepp-Hearne C, Peterson GD, Bennett EM (2010) Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc Natl Acad Sci 107:5242–5247PubMedCrossRefGoogle Scholar
  61. Rhoades CC, Eckert GE, Coleman DC (2000) Soil carbon differences among forest, agriculture, and secondary vegetation in lower montane Ecuador. Ecol Appl 10(2):497–505CrossRefGoogle Scholar
  62. Rice RA (2003) Coffee production in a time of crisis: social and environmental connections. SAIS Review 21(1):221–245CrossRefGoogle Scholar
  63. Rice RA, Ward J (1996) Coffee, conservation, and commerce in the western hemisphere. The Smithsonian Migratory Bird Center and the Natural Resources Defense Council, Washington, DCGoogle Scholar
  64. Robertson GP, Swinton SM (2005) Reconciling agricultural productivity and environmental integrity: a grand challenge for agriculture. Front Ecol Environ 3(1):38–46CrossRefGoogle Scholar
  65. Rowell D (1994) Soil science: methods and applications. Longman Scientific & Technical, EssexGoogle Scholar
  66. Schlesinger WH (1986) Changes in soil carbon storage and associated properties with disturbance and recovery. In: Trabalka JR, Reichle DE (eds) The changing carbon cycle: a global analysis. Springer, New York, pp 194–220Google Scholar
  67. Schlesinger WH (1990) Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348:232–234CrossRefGoogle Scholar
  68. Segura M, Kanninen M, Suárez D (2006) Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agrofor Syst 68:143–150CrossRefGoogle Scholar
  69. Simmons CS, Tarano JM, Pinto JH (1959) Clasificación de Reconocimiento de los Suelos de la República de Guatemala. Instituto Agropecuario Nacional, Ministerio de Agricultura de Guatemala, GuatemalaGoogle Scholar
  70. Soto-Pinto L, Romero-Alvarado Y, Caballero-Nieto J, Segura Warnholtz G (2001) Woody plant diversity and structure of shade-grown-coffee plantations in northern Chiapas, Mexico. Rev Biol Trop 49(3–4):977–987PubMedGoogle Scholar
  71. Soto-Pinto L, Anzueto M, Mendoza J, Ferrer GJ, de Jong B (2010) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor Syst 78:39–51CrossRefGoogle Scholar
  72. Súarez Pascua DA (2002) Cuantifación y valoración económica del servicio ambiental almacenamiento de carbono en sistemas agroforestales de café en la Comarca Yassica Sur, Matagalpa. Nicaragua, Dissertation, CATIEGoogle Scholar
  73. Tucker C, Eakin H, Castellanos E (2010) Perceptions of risk and adaptation: coffee producers, market shocks, and extreme weather in Central America and Mexico. Glob Environ Chang 20:23–32CrossRefGoogle Scholar
  74. UNFCCC (United Nations Framework Convention on Climate Change) (2006) Revised simplified baseline and monitoring methodologies for selected small-scale afforestation and reforestation activities under the clean development mechanism. Bonn, Germany. Accessed 12 December 2011
  75. van Noordwijk M, Rahayu S, Hairiah K, Wulan YC, Farida A, Verbist B (2002) Carbon stock assessment for a forest-to-coffee conversion landscape in Sumber-Jaya (Lampung, Indonesia): from allometric equations to land use change analysis. Science in China Series C-Life Sciences 45:75–86. Suppl. Science in China Press, BeijingGoogle Scholar
  76. Varangis P, Siegel P, Giovannucci D, Lewin B (2003) Dealing with the coffee crisis in Central America: impacts and strategies. Policy Research Working Paper 2993, World Bank, Washington, DCGoogle Scholar
  77. Wang Y, Amundson R, Trumbore S (1999) The impact of land use change on C turnover in soils. Global Biogeochem Cycles 13(1):47–57CrossRefGoogle Scholar
  78. Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Mikaela Schmitt-Harsh
    • 1
  • Tom P. Evans
    • 2
  • Edwin Castellanos
    • 3
  • J. C. Randolph
    • 4
  1. 1.School of Public and Environmental AffairsIndiana UniversityBloomingtonUSA
  2. 2.Department of GeographyIndiana UniversityBloomingtonUSA
  3. 3.Centro de Estudios Ambientales y de BiodiversidadUniversidad del Valle de GuatemalaGuatemalaGuatemala
  4. 4.School of Public and Environmental AffairsIndiana UniversityBloomingtonUSA

Personalised recommendations