Advertisement

Agroforestry Systems

, Volume 87, Issue 1, pp 233–250 | Cite as

Species-site matching in mixed species plantations of native trees in tropical Australia

  • Daniel G. Manson
  • Susanne Schmidt
  • Mila Bristow
  • Peter D. Erskine
  • Jerome K. Vanclay
Article

Abstract

Mixed species plantations using native trees are increasingly being considered for sustainable timber production. Successful application of mixed species forestry systems requires knowledge of the potential spatial interaction between species in order to minimise the chance of dominance and suppression and to maximise wood production. Here, we examined species performances across 52 experimental plots of tree mixtures established on cleared rainforest land to analyse relationships between the growth of component species and climate and soil conditions. We derived site index (SI) equations for ten priority species to evaluate performance and site preferences. Variation in SI of focus species demonstrated that there are strong species-specific responses to climate and soil variables. The best predictor of tree growth for rainforest species Elaeocarpus grandis and Flindersia brayleyana was soil type, as trees grew significantly better on well-draining than on poorly drained soil profiles. Both E. grandis and Eucalyptus pellita showed strong growth response to variation in mean rain days per month. Our study generates understanding of the relative performance of species in mixed species plantations in the Wet Tropics of Australia and improves our ability to predict species growth compatibilities at potential planting sites within the region. Given appropriate species selections and plantation design, mixed plantations of high-value native timber species are capable of sustaining relatively high productivity at a range of sites up to age 10 years, and may offer a feasible approach for large-scale reforestation.

Keywords

Elaeocarpus grandis E. cloeziana E. pellita Flindersia brayleyana Mixed species plantation Rainforest plantation Soil type Site index Species-site matching 

Notes

Acknowledgments

We would like to thank the Queensland Department of Employment, Economic Development and Innovation, Horticulture and Forest Science (formerly QDPI) for the use of the data from Experiment 799Ath, the private landholders who allowed us access to their plantations and the QPI researchers and UQ students who have assisted with tree measures.

References

  1. Alemdag I (1988) Site index equations for White Spruce in Northwest Canada. For Ecol Manag 23:61–71. doi: 10.1016/0378-1127(88)90014-X CrossRefGoogle Scholar
  2. Amoroso MM, Turnblom EC (2006) Comparing productivity of pure and mixed Douglas-fir and western hemlock plantations in the Pacific Northwest. Can J For Res 36(6):1484–1496. doi: 10.1139/X06-042 CrossRefGoogle Scholar
  3. Australian Bureau of Meteorology (2008) NRM enhanced meteorological datasets (Patched Point and Gridded Data), SILO Data Drill. http://www.longpaddock.qld.gov.au/silo/
  4. Avery TE, Burkhart HE (2002) Forest measurements, 5th edn. McGraw-Hill, New YorkGoogle Scholar
  5. Boland DJ, Brooker MIH, Chippendale GM, Hall N, Hyland BPM, Johnston RD, Kleinig DA, McDonald MW, Turner JD (2006) Forest trees of Australia, 5th edn. CSIRO Publishing, SydneyGoogle Scholar
  6. Bristow M, Erskine PD, McNamara S, Annandale M (2005) Species performance and site relationships for rainforest timber species in plantations in the humid tropics of Queensland. In: Erskine PD, Lamb D, Bristow M (eds) Reforestation in the Tropics and Subtropics of Australia Using Rainforest Tree Species. RIRDC Publication No 05/087, Rural Industries Research and Development Corporation, Canberra, pp 84–100Google Scholar
  7. Bristow M, Vanclay J, Brooks L, Hunt M (2006) Growth and speces interactions of Eucalyptus pellita in a mixed and monoculture plantation in the humid tropics of north Queensland. For Ecol Manag 233:285–294. doi: 10.1016/j.foreco.2006.05.019 CrossRefGoogle Scholar
  8. Brown JH (2006) Growth intercept methods for predicting site index in white pine plantations in the glaciated areas of Ohio. North J Appl For 23(3):176–183Google Scholar
  9. Canham C, LePage P, Coates K (2004) A neighbourhood analysis of canopy tree competition: effects of shading versus crowding. Can J For Res 34:778–787. doi: 10.1139/X03-232 CrossRefGoogle Scholar
  10. Cavard X, Bergeron Y, Chen HYH, Pare D (2010) Mixed-species effect on tree above-ground carbon pools in east-central boreal forests. Can J For Res 40(1):37–47. doi: 10.1139/X09-171 CrossRefGoogle Scholar
  11. Chen HYH, Klinka K, Mathey AH, Wang X, Varga P, Chormouzis C (2003) Are mixed species more productive than single-species stands: an empirical test of three forest types in British Columbia and Alberta. Can J For Res 33(7):1227–1237. doi: 10.1139/X03-048 CrossRefGoogle Scholar
  12. Clarke B, McLead I, Vercoe T (2008) Trees for farm forestry: 22 promising species. Rural Industries Research and Development Corporation, Canberra. Publication No. 09/015Google Scholar
  13. Costa A, Madeiram M, Oliveira A (2008) The relationship between cork oak growth patterns and soil, slope and drainage in a cork oak woodland in Southern Portugal. For Ecol Manag 255:1525–1535. doi: 10.1016/j.foreco.2007.11.008 CrossRefGoogle Scholar
  14. del Rio M, Sterba H (2009). Comparing volume growth in pure and mixed stands of Pinus sylvestris and Quercus pyrenaica. Ann For Sci 66:5, Article Number: 502. doi: 10.1051/forest/2009035
  15. Department of Natural Resources and Water (2008) Queensland digital combined soil map. Department of Natural Resources and Water, Information Management AuthorityGoogle Scholar
  16. Dickinson G, Bristow M, Huth J (2008) Mixed-species plantations: extending the science. RIRDC Publication No 08/040, Rural Industries Research and Development Corporation, Canberra, pp 10–12Google Scholar
  17. Dordel J (2009) Effects of nurse tree species on growth environment and physiology of underplanted Toona ciliata Roemer in subtropical Argentinean plantations. Thesis, The University of British ColumbiaGoogle Scholar
  18. Elfving B, Kiviste A (1997) Construction of site index equations for Pinus sylvestris using permanent plot data in Sweden. For Ecol Manag 98:125–134. doi: 10.1016/S0378-1127(97)00077-7 CrossRefGoogle Scholar
  19. Elliott S, Navakitbumrung P, Kuarak C (2003) Selecting framework tree species for restoring seasonally dry tropical forest in Northern Thailand based on field performance. For Ecol Manag 184:177–193. doi: 10.1016/S0378-1127(03)00211-1 CrossRefGoogle Scholar
  20. Erickson HE, Harrington CA, Marshall DA (2009) Tree growth at stand and individual scales in two dual-species mixture experiments in southern Washington State, USA. Can J For Res 39(6):1119. doi: 10.1139/X09-040 CrossRefGoogle Scholar
  21. Erskine PD, Lamb D, Borschmann G (2005) Growth performance and management of a mixed species rainforest tree plantation. New For 29:117–134. doi: 10.1007/s11056-005-0250-z CrossRefGoogle Scholar
  22. Erskine PD, Lamb D, Bristow M (2006) Tree species diversity and ecosystem function: can tropical multi-species plantations generate greater productivity? For Ecol Manag 233:205–210. doi: 10.1016/j.foreco.2006.05.013 CrossRefGoogle Scholar
  23. Forrester DI, Bauhus J, Khanna PK (2004) Growth dynamics in a mixed species plantation of Eucalyptus globulus and Acacia mearnsii. For Ecol Manag 193:81–95. doi: 10.1016/j.foreco.2004.01.024 CrossRefGoogle Scholar
  24. Forrester DI, Bahaus J, Cowie AL (2005) On the success and failure of mixed-species plantations: lessons learned from a model system of Eucalyptus globulus and Acacia mearnsii. For Ecol Manag 209:147–155. doi: 10.1016/j.foreco.2005.01.012 CrossRefGoogle Scholar
  25. Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For Ecol Manag 233:211–230. doi: 10.1016/j.foreco.2006.05.012 CrossRefGoogle Scholar
  26. Forrester DI, Vanclay JK, Forrester RI (2011) The balance between facilitation and competition in mixtures of Eucalytpus and Acacia changes as stands develop. Oecologia 166(1):265–272PubMedCrossRefGoogle Scholar
  27. Glencross J, Nichols J (2008) Wood quality from high-value, mixed species agroforestry. Rural Industries Rural Development Corporation RIRDC Publication No 08/192 RIRDC Project No USC-7AGoogle Scholar
  28. Grant JC, Nichols JD, Smith RG, Brennan P, Vanclay JK (2010) Site index predictions for Eucalyptus dunnii maiden plantations with soil and site parameters in sub-tropical eastern Australia. Aust For 73(4):234–245Google Scholar
  29. Harwood CE, Alloysius D, Pomroy P, Robson K, Haines NW (1997) Early growth and survival of Eucalyptus pellita in a range of tropical environments, compared with E. grandis, E. urophylla and Acacia mangium. New For 14:203–219. doi: 10.1023/A:1006524405455 CrossRefGoogle Scholar
  30. Herbohn JL, Harrison SR, Emtage N (1999) Potential performance of rainforest and eucalypt cabinet timber species in plantations in North Queensland. Aust For 62:79–87Google Scholar
  31. Hunt MA, Battaglia M, Davidson N, Unwin G (2006) Competition between plantation Eucalyptus nitens and Acacia dealbata weeds in northeast Tasmania. For Ecol Manag 233:260–274. doi: 10.1016/j.foreco.2006.05.017 CrossRefGoogle Scholar
  32. Jian-min L, Chen C, Pan B, Li S, Liang Y (2003) The evaluation and selection of fast-growing indigenous broad leaved tree species in south China. For Res 16(6):777–782Google Scholar
  33. Kelly J, Jose S, Nichols JD, Bristow M (2009) Growth and physiological response of six Australian rainforest tree species to a light gradient. For Ecol Manag 257:287–293. doi: 10.1016/j.foreco.2008.09.008 CrossRefGoogle Scholar
  34. Korning J, Henrik B (1994) Growth rates and mortality patterns of tropical lowland tree species and the relation to forest structure in Amazonian Ecuador. J Trop Ecol 10(2):151–166. doi: 10.1017/S026646740000780X CrossRefGoogle Scholar
  35. Lamb D, Erskine P, Bristow M (2005) Reforestation with rainforest timber trees in the tropics and subtropics of Australia: a brief overview In: Erskine PD, Lamb D, Bristow M (eds) Reforestation in the tropics and subtropics of Australia using rainforest tree species. RIRDC Publication No 05/087, Rural Industries Research and Development Corporation, Canberra, pp 2–22Google Scholar
  36. Leksono B, Kurinobu S, Ide Y (2008) Realized genetic gains observed in second generation seedling seed orchards of Eucalyptus pellita in Indonesia. J For Res 13(2):110–116. doi: 10.1007/s10310-008-0061-0 CrossRefGoogle Scholar
  37. Lieberman D, Milton L, Gary H, Rodolfo P (1985) Growth rates and age-size relationships of tropical wet forest trees in Costa Rica. J Trop Ecol 1(2):97–109. doi: 10.1017/S026646740000016X CrossRefGoogle Scholar
  38. Mackey B (1993) A spatial analysis of the environmental relations of rainforest structural types. J Biogeogr 20:303–336CrossRefGoogle Scholar
  39. Manson D, Hanan J, Hunt H, Bristow M, Erskine P, Lamb D, Schmidt S (2006) Modelling predicts positive and negative interactions between three Australian tropical tree species in monoculture and binary mixture. For Ecol Manag 233:312–315. doi: 10.1016/j.foreco.2006.05.028 CrossRefGoogle Scholar
  40. McKenzie N, Jacquier D, Isbell R, Brown K (2004) Australian soils and landscapes. CSIRO Publishing, MelbourneGoogle Scholar
  41. Montagnini F, Ugalde L, Navvaro C (2003) Growth characteristics of some native tree species use in silvopastural systems in the humid lowlands of Costa Rica. Agrofor Syst 59:163–170. doi: 10.1023/A:1026351812036 CrossRefGoogle Scholar
  42. Nichols JD, Bristow M, Vanclay JK (2006) Mixed-species plantations: prospects and challenges. For Ecol Manag 233:383–390. doi: 10.1016/j.foreco.2006.07.018 CrossRefGoogle Scholar
  43. Nightingale JM, Hill MJ, Phinn SR, Davies ID, Held AA, Erskine PD (2008) Use of 3-PG and 3-PGS to simulate forest growth dynamics of Australian tropical rainforests: I. Parameterisation and calibration for old-growth, regenerating and plantation forests. For Ecol Manag 254(2):107–121. doi: 10.1016/j.foreco.2007.03.041 CrossRefGoogle Scholar
  44. Nikles DG, Bevege DI, Dickinson GR, Griffiths MW, Reilly MW, Lee DJ (2008) Developing African mahogany (Khaya senegalensis) germplasm and its management for a sustainable forest plantation industry in northern Australia: progress and needs. Aust For 71(1):33–47Google Scholar
  45. Nunifi TK, Murchison HG (1999) Provisional yield models of Teak (Tectona grandis Linn F.) plantations in northern Ghana. For Ecol Manag 120:171–178. doi: 10.1016/S0378-1127(98)00529-5 CrossRefGoogle Scholar
  46. Pancel J (ed) (1993) Tropical forestry handbook. Springer, BerlinGoogle Scholar
  47. Perez D, Kanninen M (2005) Stand growth scenarios for Tectona grandis plantations in Costa Rica. For Ecol Manag 210(1–3):425–441. doi: 10.1016/j.foreco.2005.02.037 CrossRefGoogle Scholar
  48. Potvin C, Dutilleul P (2009) Neighborhood effects and size-asymmetric competition in a tree plantation varying in diversity. Ecology 90(2):321–327. doi: 10.1890/08-0353.1 PubMedCrossRefGoogle Scholar
  49. Rosetto M, Jones R, Hunter J (2004) Genetic effects of rainforest fragmentation in an early successional tree (Elaeocarpus grandis). Heredity 93:610–618. doi: 10.1038/sj.hdy.6800585 CrossRefGoogle Scholar
  50. Russell JS, Cameron DM, Whan IF, Beech DF, Prestwidge DB (1993) Rainforest trees as a new crop for Australia. For Ecol Manag 60(41–58):41. doi: 10.1016/0378-1127(93)90022-F CrossRefGoogle Scholar
  51. Simpson J, Osborne D (2006) Performance of seven hardwood species underplanted to Pinus elliotii in south-east Queensland. For Ecol Manag 233:303–308. doi: 10.1016/j.foreco.2006.05.021 CrossRefGoogle Scholar
  52. Skovsgaard JP, Vanclay JK (2008) Forest site productivity: review of the evolution of dendrometric concepts for even-aged stands. Forestry 81(1):13–31. doi: 10.1093/forestry/cpm041 CrossRefGoogle Scholar
  53. Teshome T, Petty J (2000) Site index equations for Cypressus lusitanica in stands in Munessa forest, Ethiopia. For Ecol Manag 126:339–348. doi: 10.1016/S0378-1127(99)00105-X CrossRefGoogle Scholar
  54. Thompson WA, Stocker GC, Kriedemann PE (1988) Growth and photosynthetic response to light and nutrients of Flindersia brayleyana F. Muell., a rainforest tree with broad tolerance to sun and shade. Aust J Plant Physiol 15:299–315. doi: 10.1071/PP9880299 CrossRefGoogle Scholar
  55. Thompson WA, Huang LK, Kriedemann PE (1992) Photosynthetic response to light and nutrients in sun-tolerant and shade-tolerant rain-forest trees. 2. leaf gas-exchange and component processes of photosynthesis. Aust J Plant Physiol 19:19–42. doi: 10.1071/PP9920019 CrossRefGoogle Scholar
  56. Turner J, Lambert MJ (1998) Soil properties as affected by Pinus radiata plantations. N Z J For Sci 18(1):77–91Google Scholar
  57. Turner J, Thompson C, Turvey N, Hopmans P, Ryan P (1990) A soil classification system for Pinus radiata plantations. Aust J Soil Res 28:797–811CrossRefGoogle Scholar
  58. Vanclay JK (1989) Site productivity assessment in rainforests: an objective approach using indicator species. In: Mohd WR, Chan HT, Appanah S (eds) Proceedings of the seminar on growth and yield in tropical mixed/moist forests, 20–24 June 1988, Forest Research Institute Malaysia, Kuala Lumpur, pp 225–241Google Scholar
  59. Vanclay JK (1991) Data requirements for developing growth models for tropical moist forests. Commonw For Rev 70:248–271Google Scholar
  60. Vanclay JK (1992) Assessing site productivity in tropical moist forests. For Ecol Manag 54:257–287CrossRefGoogle Scholar
  61. Vanclay JK (1994) Sustainable timber harvesting: simulation studies in the tropical rainforests of north Queensland. For Ecol Manag 69:299–320. doi: 10.1016/0378-1127(94)90237-2 CrossRefGoogle Scholar
  62. Vanclay JK (2006a) Can the lessons from the Community Rainforest Reforestation Program in eastern Australia be learned? Int For Rev 8(2):256–264. doi: 10.1505/ifor.8.2.256 Google Scholar
  63. Vanclay JK (2006b) Spatially-explicit competition indices and the analysis of mixed-species plantings with simile modelling environment. For Ecol Manag 233:295–302. doi: 10.1016/jforeco.2005.05.020 CrossRefGoogle Scholar
  64. Vanclay JK, Henry NB (1988) Assessing site productivity of indigenous cypress pine forest in southern Queensland. Commonw For Rev 67:53–64Google Scholar
  65. Wilczynski S, Slawomir V (2006) The variation of tree-ring widths of Scots pine (Pinus sylvestris L.) affected by air pollution. Eur J For Res 3:213–219. doi: 10.1007/s10342-005-0106-2 CrossRefGoogle Scholar
  66. Yamada M, Gholz HL (2002) Growth and yield of some indigenous trees in an Amazonian agroforestry system: a rural-history-based analysis. Agrofor Syst 55(1):l7–26. doi: 10.1023/A:1020264814888 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Daniel G. Manson
    • 1
  • Susanne Schmidt
    • 6
  • Mila Bristow
    • 2
    • 3
    • 4
  • Peter D. Erskine
    • 5
  • Jerome K. Vanclay
    • 3
  1. 1.School of Biological SciencesThe University of QueenslandBrisbaneAustralia
  2. 2.Department of Employment, Economic Development and Innovation, Horticulture and Forest ScienceAgri-Science QueenslandGympieAustralia
  3. 3.School of Environmental Science and ManagementSouthern Cross UniversityLismoreAustralia
  4. 4.Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinAustralia
  5. 5.Centre for Mined Land RehabilitationThe University of QueenslandBrisbaneAustralia
  6. 6.School of Agriculture and Food ScienceThe University of QueenslandBrisbaneAustralia

Personalised recommendations