Agroforestry Systems

, Volume 87, Issue 1, pp 81–92

Biomass production and chemical composition of Moringa oleifera under different planting densities and levels of nitrogen fertilization

  • B. Mendieta-Araica
  • E. Spörndly
  • N. Reyes-Sánchez
  • F. Salmerón-Miranda
  • M. Halling
Article

Abstract

The effect of different planting densities (100,000 and 167,000 plants ha−1) and levels of nitrogen fertilization (0, 261, 521, and 782 kg N ha−1 year−1) on biomass production and chemical composition of Moringa oleifera was studied in a split-plot design with four randomized complete blocks over 2 years with eight cuts year−1 at the National Agrarian University farm in Managua, Nicaragua (12°09′30.65″N, 86°10′06.32″W, altitude 50 m above sea level). Density 167,000 plants ha−1 produced significantly higher total dry matter yield (TDMY) and fine fraction yield (FFDM), 21.2 and 19.2 ton ha−1 respectively, compared with 11.6 and 11 ton ha−1 for 100,000 plants ha−1. Growth rate in 167,000 plants ha−1 was higher than in 100,000 plants ha−1 (0.06 compared with 0.03 ton ha−1 day−1). Average plant height was 119 cm irrespective of planting density. Fertilization at the 521 and 782 kg N ha−1 year−1 levels produced the highest TDMY and FFDM in both years of the study and along all cuts. The interaction between cut and year was significant, with the highest TDMY and FFDM during the rainy season in the second year. Chemical composition of fractions showed no significant differences between planting densities. Significantly higher crude protein content was found in the coarse fraction at fertilizer levels 521 and 782 kg N ha−1 year−1 (87.9 and 93.7 g kg−1 DM) compared with lower levels. The results indicate that Moringa can maintain up to 27 ton ha−1 dry matter yield under dry tropical forest conditions over time at a planting density of 167,000 plants ha−1 if the soil is regularly supplied with N at a level of approximately 521 kg ha year−1 in conditions where phosphorus and potassium are not limiting.

Keywords

Moringa Fertilization Biomass production Chemical composition Planting density 

References

  1. Abbot L, Murphy D (2007) What is soil biological fertility? In: Abbot L, Murphy D (eds) Soil biological fertility. Springer, AmsterdamGoogle Scholar
  2. Anwar F, Latif S, Ashraf M, Gilani A (2007) Moringa oleifera: a food plant with multiple medicinal uses. Phytother Res 21:17–25PubMedCrossRefGoogle Scholar
  3. AOAC (1984) Official methods of analysis, 14th edn. Association of Official Analytical Chemists, Washington, DCGoogle Scholar
  4. AOAC (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, GaithersburgGoogle Scholar
  5. Boschini C, Dormond H, Castro A (2000) Composición química de la morera (Morus alba) para uso en la alimentación animal: densidades y frecuencias de poda. Agron Mesoam 11:41–49Google Scholar
  6. Calub B (1993) Evaluation of indigenous and naturalized multipurpose trees as alternative to Leucaena leucocephala in hillyland farming, seminar-workshop towards more effective utilization of resources for sustained development, Makati, Metro Manila, Philippines, Philippine Techn JGoogle Scholar
  7. Dash S, Gupta N (2009) Effect of inorganic, organic and bio fertilizer on growth of hybrid Moringa oleifera (PKM 1). Science 4:630–635Google Scholar
  8. Drinkwater L, Schipanski M, Snapp S, Jackson L (2008) Ecological based nutrient management. In: Snapp S, Pound B (eds) Agricultural system: agroecology and rural innovation. Elsevier, Amsterdam, Netherlands, pp 159–209Google Scholar
  9. Duke J (1983) Handbook of energy crops. Updated January 7th 1998, Retrieved October 5th 2010 from http://www.hort.purdue.edu/newcrop/duke_energy/Moringa_oleifera.html
  10. Ella A, Jacobsen C, Stür W, Blair G (1989) Effect of plant density and cutting frequency on the productivity of four tree legumes. Trop Grassland 23:28–34Google Scholar
  11. FAO (1988) FAO/Unesco soil map of the world, revised legend, with corrections and updates. World soil resources report 60. FAO, RomeGoogle Scholar
  12. Ferreira P, Faria D, Oliveira J, Carvalho A (2008) Moringa oleifera: bioactive compounds and nutritional potential. Rev de Nutrição 4:431–437Google Scholar
  13. Foidl N, Makkar H, Becker K (2001). The potential of Moringa oleifera for agricultural and industrial uses. What development potential for Moringa products? Dar Es SalaamGoogle Scholar
  14. Hartley S, Nelson K, Gorman M (1995) The effect of fertiliser and shading on plant chemical composition and palatability to Orkney voles, Microtus arvalis orcadensis. Oikos 72:79–87CrossRefGoogle Scholar
  15. INETER (Instituto Nicaraguense de Estudios Territoriales) (2009) Boletín climático. Dirección general de meteorología, ManaguaGoogle Scholar
  16. Jiang G, Liu C (2006) Main diseases and pests on Moringa trees in Xishaungbanna. Trop Agric Sci Tech 4:358–366Google Scholar
  17. Jiménez F, Muschler R (2001) Introducción a la agroforestería. In: Jiménez F, Muschler R, Kopsell E (eds) Funciones y aplicaciones de sistemas agroforestales. CATIE, Costa RicaGoogle Scholar
  18. Jyothi G, Babu R (2007) Graded doses of nitrogen on drumstick (Moringa pterygosperma Goertn Var PKM-1). J Res ANGRAU 35:111–113Google Scholar
  19. Makkar H, Becker K (1996) Nutritional value and anti-nutritional components of whole and ethanol extracted Moringa oleifera leaves. Anim Feed Sci Tech 63:211–228CrossRefGoogle Scholar
  20. Manh L, Nguyen N, Ngoi T (2005) Introduction and evaluation of Moringa oleifera for biomass production and as feed for goats in the Mekong delta. Livest Res Rural Dev 17:9Google Scholar
  21. Martin F, Ruberté R (1975) Edible leaves of the tropics. USDA, Puerto RicoGoogle Scholar
  22. Mommer L, Lenssen J, Huber H, Visser E, De Kroon H (2006) Ecophysiological determinants of plant performance under flooding: a comparative study among seven plant families. J Ecol 94:1117–1129CrossRefGoogle Scholar
  23. Morton J (1991) The horseradish tree, Moringa pterygosperma (Moringaceae)—a boon to arid lands? Econ Bot 45:318–333CrossRefGoogle Scholar
  24. Oliveira J, Silveira S, Vasconcelos I, Cavada B, Moreira R (1999) Compositional and nutritional attributes of seeds from the multiple purpose tree Moringa oleifera Lamarck. J Sci Food Agric 79:815–820CrossRefGoogle Scholar
  25. Oliveira J, Souto J, Santos R, Souto P, Maior Junior S (2009) Adubação com diferentes estercos no cultivo de moringa (Moringa oleifera Lam.). Rev Verde de Agroecol e Desenvolvimento Sustentavel 4:125–134Google Scholar
  26. Olsen S, Cole C, Watanabe F, Dean L (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA circ. 939. USDA, Washington, DCGoogle Scholar
  27. Palada M, Chang L (2003) Suggested cultural practices for Moringa. Center. Pub # 03-545Asian Vegetable Research and DevelopmentGoogle Scholar
  28. Pamo E, Boukila B, Tonfack L, Momo M, Kana J, Tendonkeng F (2005) Influence de la fumure organique, du NPK et du mélange des deux fertilisants sur la croissance de Moringa oleifera Lam. dans l’Ouest Cameroun. Livest Res for Rural Dev 17Google Scholar
  29. Pezo D, Ibrahim M (1998) Sistemas Silvopastoriles. Modulos de enseñanza agroforestal no-2. CATIE, pp 111–123Google Scholar
  30. Phengvichit V, Ledin S, Horne P, Ledin I (2006) Effects of different fertilisers and harvest frequencies on foliage and tuber yield and chemical composition of foliage from two cassava (Manihot esculenta, Crantz) varieties. Trop Subtrop Agroecosyst 6:177–187Google Scholar
  31. Ramachandran C, Peter K, Gopalakrishnan P (1980) Drumstick (Moringa oleifera): a multipurpose Indian vegetable. Econ Bot 34:276–283CrossRefGoogle Scholar
  32. Reyes-Sánchez N, Spörndly E, Ledin I (2006a) Effect of feeding different levels of foliage of Moringa oleifera to creole dairy cows on intake, digestibility, milk production and composition. Livest Sci 1001:24–31CrossRefGoogle Scholar
  33. Reyes-Sánchez N, Ledin S, Ledin I (2006b) Biomass production and chemical composition of Moringa oleifera under different management regimes in Nicaragua. Agrofor Syst 66:231–242CrossRefGoogle Scholar
  34. Rodríguez C, Arias R, Quiñones J (1994) Efecto de la frecuencia de poda y el nivel de fertilización nitrogenada, sobre el rendimiento y calidad de la biomasa de Morera (Morus spp.) en el trópico seco de Guatemala. In: Benavidez J (ed) Arboles y arbustos forrajeros en América central, vol 2. Serie técnica # 236. CATIE, pp 515–529Google Scholar
  35. Salmerón-Miranda F, Bath B, Eckersten H, Forkman J, Wisvtad M (2007) Aboveground nitrogen in relation to estimated total plant uptake in maize and bean. Nutrient Cycling Agroecosyst 79:125–139CrossRefGoogle Scholar
  36. SAS (2004) User guide, version 9.1.2. Statistical analysis system institute Inc.Google Scholar
  37. Shelton H, Brewbaker J (1998) Leucaena leucocephala—the most widely used forage tree legume. In: Gutteridge R, Shelton H (eds) Forage tree legumes in tropical agriculture. Tropical Grassland Society of Australia Inc., QueenslandGoogle Scholar
  38. Simons A, Stewart J (1998) Gliricidia sepium—a multipurpose forage tree legume. In: Gutteridge R, Shelton H (eds) Forage tree legumes in tropical agriculture. Tropical Grassland Society of Australia Inc., QueenslandGoogle Scholar
  39. Soliva C, Kreuzer M, Foidl N, Foidl G, Machmüller A, Hess H (2005) Feeding value of whole and extracted Moringa oleifera leaves for ruminants and their effects on ruminal fermentation in vitro. Anim Feed Sci Tech 118:47–62CrossRefGoogle Scholar
  40. Szott L, Kass D (1993) Fertilizers in agroforestry systems. Agrofor Syst 23:157–176CrossRefGoogle Scholar
  41. Tanner J, Kapos V, Freskos S, Healey J, Theobald A (2009) Nitrogen and phosphorus fertilization of Jamaican montane forest trees. J Trop Ecol. doi:10.1017/S0266467400004375 Google Scholar
  42. Toledo J, Shultze-Kraft R (1982) Metodología para la evaluación agronómica de pastos tropicales. In: Toledo J (ed) Manual para la evaluación agronómica. Red internacional de evaluación de pastos tropicales. Centro Internacional de Agricultura Tropical, pp 91–110Google Scholar
  43. USDA (United States Department of Agriculture) (1995) Soil survey laboratory information manual. Lincoln, Nebraska, p 287Google Scholar
  44. Van Soest P, Robertson J, Lewis B (1991) Methods for dietary fiber, neutral-detergent fiber and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597PubMedCrossRefGoogle Scholar
  45. Ventura J, Pulgar R (1997) Efecto de la densidad de siembra y frecuencia de corte sobre los components de la producción y follaje de yucca Manihot esculenta. Crantz Rev de Agronom 7:229–243Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • B. Mendieta-Araica
    • 1
  • E. Spörndly
    • 1
  • N. Reyes-Sánchez
    • 3
  • F. Salmerón-Miranda
    • 4
  • M. Halling
    • 2
  1. 1.Department of Animal Nutrition and ManagementSwedish University of Agricultural SciencesUppsalaSweden
  2. 2.Department of Crop Production EcologySwedish University of Agricultural SciencesUppsalaSweden
  3. 3.Facultad de Ciencia AnimalUniversidad Nacional AgrariaManaguaNicaragua
  4. 4.Facultad de AgronomíaUniversidad Nacional AgrariaManaguaNicaragua

Personalised recommendations