Advertisement

Agroforestry Systems

, Volume 86, Issue 1, pp 1–16 | Cite as

Agroforestry species of the Bolivian Andes: an integrated assessment of ecological, economic and socio-cultural plant values

  • Regine BrandtEmail author
  • Heike Zimmermann
  • Isabell Hensen
  • Juan Carlos Mariscal Castro
  • Stephan Rist
Article

Abstract

Agroforestry is a promising method for enhancing land-use sustainability in the Bolivian Andes. However, its benefits in terms of rural development are under-recognized due to gaps in understanding users’ perceptions while taking into consideration both local and global environmental goals. Our study aimed to narrow these gaps by developing an analytical framework for analyzing the site-specific socio-ecological factors and interactions related to local woody species and assessing their ecological, economic, and socio-cultural plant values in order to identify the most promising agroforestry species. The framework was then tested in an indigenous community at 2,760–3,830 m a.s.l., incorporating vegetation surveys, environmental studies, and interviews on plant functions. Ecological, economic, and socio-cultural values and the ecological apparency of plants were calculated, and detrended correspondence and principal component analyses helped to reveal the socio-ecological context of significant factors for plant distribution and uses. Results showed dominating seral woody species along an altitudinal gradient. Although shrubs were more ecologically apparent than trees, trees were perceived to be more valuable as the usefulness and cultural importance of species increased with plant height and timber availability. Phytosociological factors played a minor but still significant role in perceived usefulness. Schinus molle and Prosopis laevigata (<3,200 m a.s.l.), Polylepis subtusalbida (>3,200 m a.s.l.), and Baccharis dracunculifolia (both zones) were evaluated as most promising for agroforestry use. In conclusion, our analytical framework proved to be a valuable tool for context-specific agroforestry plant selection. Nonetheless, economic, technical, and socio-cultural limitations of cultivating native agroforestry species were revealed as well. Agroforestry science and practice should, therefore, focus on enhancing reproductive potentials of existing woody vegetation, as well as problem-oriented horizontal dialogues between indigenous, expert, and scientific actors.

Keywords

Agroforestry Bolivian Andes Local knowledge Native woody species Quantitative ethnobotany Socio-ecological plant values 

Notes

Acknowledgments

We greatly appreciate the financial support received from the Andrea-von-Braun-Stiftung in Munich, Germany. Our most sincere thanks go to the syndicate assembly of Tres Cruces and the local leaders of the sub-central Waka Playa for authorizing our research, and to all local peasants who facilitated the study with confidence and ready cooperation. We are also thankful for the technical assistance of the BioAndes conservation and development program, funded by the Swiss Agency for Development and Cooperation (SDC). Moreover, we would like to acknowledge the scientific support of the Swiss National Centre of Competence in Research (NCCR) North–South: Research Partnerships for Mitigating Syndromes of Global Change, a research program co-funded by the Swiss National Science Foundation (SNSF), SDC, and the participating institutions. Furthermore, we are thankful to the Bolivian National Meteorology and Hydrology Service (SENAMHI), Cochabamba, for providing climatic data, as well as to Magaly Mercado and the working team of the herbarium of Cochabamba (BOLV) for their support in plant identification. We are very grateful to our colleagues Sarah-Lan Mathez-Stiefel (CDE), Rolando Sánchez, Sonia Medrano, Roger Juárez, Deicy Mejía (AGRUCO), Michael Beckmann, Christine Voigt, Catharina Landschulz, Ronny Warzecha, and Heidi Hirsch (MLU) for cooperating in field studies, interview translation, soil analyses, and graphic presentation. Finally, we would like to acknowledge Marlène Thibault and Danny McCluskey for proofreading the manuscripts, and the anonymous reviewers who have contributed to improving this paper.

Supplementary material

10457_2012_9503_MOESM1_ESM.pdf (57 kb)
Supplementary material 1 (PDF 57 kb)

References

  1. Aguilar LC (1997) Predicción del tiempo y su influencia en la organización de la producción en la comunidad de Tres Cruces, provincia Tapacarí. Tesis de licenciatura. AGRUCO, Universidad Mayor de San Simón, CochabambaGoogle Scholar
  2. Aguilar LC, Bracamonte R (2002) Diagnóstico participativo y plan de ordenamiento predial de la comunidad Tres Cruces. AGRUCO, Municipio Tapacarí, CochabambaGoogle Scholar
  3. Ahmed P (1989) Eucalyptus in agroforestry: its effects on agricultural production and economics. Agrofor Syst 8:31–38CrossRefGoogle Scholar
  4. Alavalapati JRR, Shrestha RK, Stainback GA, Matta JR (2004) Agroforestry development: an environmental economic perspective. Agrofor Syst 61:299–310CrossRefGoogle Scholar
  5. Albuquerque UP, Lucena RFP, Monteiro JM, Florentino ATN, Almeida C (2006) Evaluating two quantitative ethnobotanical techniques. Ethnobot Res Appl 4:51–60Google Scholar
  6. Alexander EB, Mallory JI, Colwell WL (1993) Soil-elevation relationships on a volcanic plateau in the southern Cascade Range, northern California, USA. Catena 20:113–128CrossRefGoogle Scholar
  7. Arrázola S, Atahuachi M, Saravia E, Lopez A (2002) Diversidad florística medicinal y potencial etnofarmacológico de las plantas de los valles secos de Cochabamba, Bolivia. Rev Boliv Ecol Conserv Ambient 12:53–85Google Scholar
  8. Backes MM (2001) The role of indigenous trees for the conservation of biocultural diversity in traditional agroforestry land use systems: the Bungoma case study. In situ conservation of indigenous tree species. Agrofor Syst 52:119–132CrossRefGoogle Scholar
  9. Bennett BC, Prance GT (2000) Introduced plants in the indigenous pharmacopoeia of northern South America. Econ Bot 54(1):90–102CrossRefGoogle Scholar
  10. Boden AG (1994) Bodenkundliche Kartieranleitung. E. Schweizerbart’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  11. Boom BM (1986) A forest inventory in Amazonian Bolivia. Biotropica 18(4):287–294CrossRefGoogle Scholar
  12. Butterfield RP (1995) Promoting biodiversity: advances in evaluating native species for reforestation. For Ecol Manag 75:111–121CrossRefGoogle Scholar
  13. Chepstow-Lusty A, Winfield M (2000) Inca agroforestry: lessons from the past. Ambio 29(6):322–328Google Scholar
  14. Cook FEM (1995) Economic botany data collection standard. Royal Botanic Gardens Kew, RichmondGoogle Scholar
  15. Dahlgren RA, Boettinger JL, Huntington GL, Amundson RG (1997) Soil development along an elevational transect in the western Sierra Nevada, California. Geoderma 78:207–236CrossRefGoogle Scholar
  16. Fjeldså J (2002) Polylepis forests-vestiges of a vanishing ecosystem in the Andes. Ecotropica 8:111–123Google Scholar
  17. Fjeldså J, Kessler M (1996) Conserving the biological diversity of Polylepis woodlands of the highland of Peru and Bolivia. A contribution to sustainable natural resource management in the Andes. NORDECO, CopenhagenGoogle Scholar
  18. Gareca EE, Hermy M, Fjeldså J, Honnay O (2010) Polylepis woodland remnants as biodiversity islands in the Bolivian high Andes. Biodivers Conserv 19:3327–3346CrossRefGoogle Scholar
  19. Garibaldi A, Turner N (2004) Cultural keystone species: implications for ecological conservation and restoration. Ecol Soc 9(3):1. http://www.ecologyandsociety.org/vol9/iss3/art1/ Google Scholar
  20. Gausset Q (2004) Ranking local tree needs and priorities through an interdisciplinary action research approach. J Transdiscipl Environ Stud 3(1):1–17Google Scholar
  21. Hensen I (2002) Impacts of anthropogenic activity on the vegetation of Polylepis woodlands in the region of Cochabamba, Bolivia. Ecotropica 8:183–203Google Scholar
  22. Hernando A, Tejera R, Velázquez J, Núñez MV (2010) Quantitatively defining the conservation status of Natura 2000 forest habitats and improving management options for enhancing biodiversity. Biodivers Conserv 19:2221–2233CrossRefGoogle Scholar
  23. Honorable Alcaldía Municipal de Tapacarí (2003) Ajuste del plan de desarrollo municipal Tapacari (PDM) 2003–2007. Programa de Inversión Rural Participativo (PDCR II), AGRUCO, CochabambaGoogle Scholar
  24. Ibisch PL (2002) Evaluation of a rural development project in southwest Cochabamba, Bolivia, and its agroforestry activities involving Polylepis besseri and other native species—a decade of lessons learned. Ecotropica 8:205–218Google Scholar
  25. IPNI (2011) The International Plant Names Index. Royal Botanic Gardens Kew, Harvard University Herbaria, Australian National Herbarium. http://www.ipni.org. Accessed 17 July 2011
  26. ISSG (2011) Global Invasive Species Database. Invasive Species Specialist Group. http://www.issg.org/database/welcome. Accessed 3 June 2011
  27. Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10CrossRefGoogle Scholar
  28. Jose S (2011) Managing native and non-native plants in agroforestry systems. Agrofor Syst 83:101–105CrossRefGoogle Scholar
  29. Kidanu S, Mamo T, Stroosnijder L (2005) Biomass production of Eucalyptus boundary plantations and their effect on crop productivity on Ethiopian highland vertisols. Agrofor Syst 63:281–290CrossRefGoogle Scholar
  30. Killeen TJ, García E, Beck SG (1993) Guía de árboles de Bolivia. Herbario Nacional de Bolivia, Missouri Botanical Garden, La PazGoogle Scholar
  31. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204PubMedCrossRefGoogle Scholar
  32. Langenberger G, Prigge V, Martin K, Belonias B, Sauerborn J (2009) Ethnobotanical knowledge of Philippine lowland farmers and its application in agroforestry. Agrofor Syst 76:173–194CrossRefGoogle Scholar
  33. Lawrence A, Phillips OL, Ismodes AR, Lopez M, Rose S, Wood D, Farfan AJ (2005) Local values for harvested forest plants in Madre de Dios, Peru: towards a more contextualised interpretation of quantitative ethnobotanical data. Biodivers Conserv 14:45–79CrossRefGoogle Scholar
  34. Lucena RFP, Araújo E, Albuquerque UP (2007) Does the local availability of woody Caatinga plants (northeastern Brazil) explain their use value? Econ Bot 61(4):347–361CrossRefGoogle Scholar
  35. Luzar J (2007) The political ecology of a “forest transition”: Eucalyptus forestry in the southern Peruvian Andes. Ethnobot Res Appl 5:85–93Google Scholar
  36. Madge C (1995) Ethnography and agroforestry research: a case study from the Gambia. Agrofor Syst 32:127–146CrossRefGoogle Scholar
  37. Mahboubi P, Gordon AM, Stoskopf N, Voroney RP (1997) Agroforestry in the Bolivian Altiplano: evaluation of tree species and greenhouse growth of wheat on soils treated with tree leaves. Agrofor Syst 37:59–77CrossRefGoogle Scholar
  38. Mariscal JC, Rist S (1999) Tipos de relaciones bosque-comunidad y normas tradicionales de uso y acceso a la vegetación boscosa. El caso de las comunidades de Chorojo y Chullpa K’asa de las provincias Quillacollo y Tapacarí en el departamento de Cochabamba. AGRUCO, PROBONA, CochabambaGoogle Scholar
  39. Mathez-Stiefel SL, Vandebroek I (2012) Distribution and transmission of medicinal plant knowledge in the Andean highlands: a case study from Peru and Bolivia. Evid Based Complement Altern Med 2012:1–18CrossRefGoogle Scholar
  40. Mathez-Stiefel SL, Boillat S, Rist S (2007) Promoting the diversity of worldviews: an ontological approach to bio-cultural diversity. In: Haverkort B, Rist S (eds) Endogenous development and bio-cultural diversity: the interplay of worldviews, globalization and locality. COMPAS, CDE, Leusden, pp 67–81Google Scholar
  41. MBG (2011) Tropicos. Missouri Botanical Garden. http://www.tropicos.org. Accessed 17 July 2011
  42. McDonald MA, Hofny-Collins A, Healey JR, Goodland TCR (2003) Evaluation of trees indigenous to the montane forest of the Blue Mountains, Jamaica for reforestation and agroforestry. For Ecol Manag 175:379–401CrossRefGoogle Scholar
  43. McNeely JA, Schroth G (2006) Agroforestry and biodiversity conservation—traditional practices, present dynamics, and lessons for the future. Biodivers Conserv 15:549–554CrossRefGoogle Scholar
  44. Navarro G, Maldonado M (2002) Geografía ecológica de Bolivia: vegetación y ambientes acuáticos. Centro de Ecología Difusión Simón I. Patiño, Santa CruzGoogle Scholar
  45. Navarro G, Molina JA, De la Barra N (2005) Classification of the high-Andean Polylepis forests in Bolivia. Plant Ecol 176:113–130CrossRefGoogle Scholar
  46. Nuñez MA, Simberloff D (2005) Invasive species and the cultural keystone species concept. Ecol Soc 10(1): r4. http://www.ecologyandsociety.org/vol10/iss1/resp4/
  47. Phillips O, Gentry AH (1993a) The useful plants of Tambopata, Peru: I. Statistical hypotheses tests with a new quantitative technique. Econ Bot 47(1):15–32CrossRefGoogle Scholar
  48. Phillips O, Gentry AH (1993b) The useful plants of Tambopata, Peru: II. Additional hypothesis testing in quantitative ethnobotany. Econ Bot 47(1):33–43CrossRefGoogle Scholar
  49. Ponce D (2003) Previsión del clima y recreación del conocimiento indígena como estrategia para la conservación de la diversidad cultivada en los Andes bolivianos: el caso de la comunidad de Chorojo, provincia Quillacollo, departamento Cochabamba. Tesis de maestría. AGRUCO, Universidad Mayor de San Simón, CochabambaGoogle Scholar
  50. Quinlan M (2005) Considerations for collecting freelists in the field: examples from ethnobotany. Field Methods 17(3):1–16CrossRefGoogle Scholar
  51. R Foundation (2010) The R project for statistical computing. http://www.r-project.org. Accessed 24 Sept 2010
  52. Reed MS (2007) Participatory technology development for agroforestry extension: an innovation-decision approach. Afr J Agric Res 2(8):334–341Google Scholar
  53. Reynel C, Léon J (1990) Árboles y arbustos andinos para agroforestería y conservación de suelos. Tomo I: Especies forestales útiles para el productor agropecuario. Tomo II: Las especies. Proyecto FAO Holanda/DGFF, LimaGoogle Scholar
  54. Richardson DM, Binggeli P, Schroth G (2004) lnvasive agroforestry trees: problems and solutions. In: Schroth G, Da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac AMN (eds) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, pp 371–396Google Scholar
  55. Rist S, Dahdouh-Guebas F (2006) Ethnosciences—a step towards the integration of scientific and indigenous forms of knowledge in the management of natural resources for the future. Environ Dev Sustain 8:467–493CrossRefGoogle Scholar
  56. Russo RO (1990) Evaluating Alnus acuminata as a component in agroforestry systems. Agrofor Syst 10:241–252CrossRefGoogle Scholar
  57. Ruthsatz B, Fisel U (1984) The utilization of natural resources by a small community on the highlands of Bolivia and its effects on vegetation cover and site conditions. Erdwiss Forsch 18:211–234Google Scholar
  58. Saunders CD, Brook AT, Myers OE (2006) Using psychology to save biodiversity and human well-being. Conserv Biol 20(3):702–705PubMedCrossRefGoogle Scholar
  59. Tardío J, Pardo-de-Santayana M (2008) Cultural importance indices: a comparative analysis based on the useful wild plants of southern Cantabria (northern Spain). Econ Bot 62(1):24–39CrossRefGoogle Scholar
  60. Thomas E, Vandebroek I, Van Damme P (2007) What works in the field? A comparison of different interviewing methods in ethnobotany with special reference to the use of photographs. Econ Bot 61(4):376–384CrossRefGoogle Scholar
  61. Thomas E, Van Damme P, Goetghebeur P (2010a) Some factors determining species diversity of prepuna and puna vegetations in a Bolivian Andes region. Plant Ecol Evol 143(1):31–42CrossRefGoogle Scholar
  62. Thomas E, Douterlungne D, Vandebroek I, Heens F, Goetghebeur P, Van Damme P (2010b) Human impact on wild firewood species in the rural Andes community of Apillapampa, Bolivia. Environ Monit Assess 178:333–347PubMedCrossRefGoogle Scholar
  63. Torrico G, Peca C, Beck SG, García E (1994) Leñosas útiles de Potosí. Proyecto FAO/Holanda/CDF “Desarrollo forestal comunal en el Altiplano boliviano”, PotosíGoogle Scholar
  64. Turner NJ (1988) “The importance of a rose”: evaluating the cultural significance of plants in Thompson and Lillooet Interior Salish. Am Anthropol 90:272–290CrossRefGoogle Scholar
  65. Vandebroek I, Calewaert JB, De Jonckheere S, Sanca S, Semo L, Van Damme P, Van Puyvelde L, De Kimpe N (2004) Use of medicinal plants and pharmaceuticals by indigenous communities in the Bolivian Andes and Amazon. Bull World Health Organ 82(4):243–250PubMedGoogle Scholar
  66. Wiersum KF (2004) Forest gardens as an ‘intermediate’ land-use system in the nature-culture continuum: characteristics and future potential. Agrofor Syst 61:123–134CrossRefGoogle Scholar
  67. Zhang C, Fu S (2009) Allelopathic effects of Eucalyptus and the establishment of mixed stands of Eucalyptus and native species. For Ecol Manag 258(7):1391–1396CrossRefGoogle Scholar
  68. Zimmerer KS (1993) Soil erosion and labor shortages in the Andes with special reference to Bolivia, 1953–91: implications for “conservation-with-development”. World Dev 21(10):1659–1675CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Regine Brandt
    • 1
    Email author
  • Heike Zimmermann
    • 1
  • Isabell Hensen
    • 1
  • Juan Carlos Mariscal Castro
    • 2
  • Stephan Rist
    • 3
  1. 1.Institute of Biology/Geobotany and Botanical GardenMartin-Luther-University Halle-WittenbergHalle (Saale)Germany
  2. 2.Agroecología Universidad Cochabamba (AGRUCO)Universidad Mayor de San Simón (UMSS)CochabambaBolivia
  3. 3.Centre for Development and Environment (CDE)University of BernBernSwitzerland

Personalised recommendations