Agroforestry Systems

, Volume 85, Issue 3, pp 397–409 | Cite as

Differential forage use between large native and domestic herbivores in Southern Patagonian Nothofagus forests

  • Rosina Soler Esteban
  • Guillermo Martínez Pastur
  • María Vanessa Lencinas
  • Laura Borrelli
Article

Abstract

Plant—animal interactions at the landscape level become particularly relevant when land use is diversified. Nothofagus forests in southern Patagonia have been used for timber and cattle grazing purposes during the last century, causing livestock to increase (Bos taurus and Ovis aries) and large native herbivores, such as guanaco (Lama guanicoe), either maintained or decreased their populations. Within this scenario, feeding interactions between guanaco and domestic herbivores were analysed in a mosaic of open habitats and different Nothofagus forest types and management histories, whereby a total of six habitat types were identified through satellite image analysis. A total of 205 floristic surveys were conducted to characterize the plant species composition at the landscape level. Diet composition of herbivores was assessed once each season during a year, using microhistological analysis of feces. Results showed higher plant richness in open lands and lower in closed, unmanaged forests. Overall, 43 plant taxa were detected in herbivore feces, which represent 56% of plant richness detected in the field. Both guanacos and domestic herbivores included mainly grasses in their diet, which were found predominantly in open lands. Tree seedlings and saplings were consumed by all herbivores, as well, except during winter. Differential forage use between guanaco and domestic herbivores in southern Patagonian Nothofagus forests did exist. However, competition for available resources among theses herbivores resulted in an alternation of feeding sites, which varied throughout the year. Management plans in southern Southern Patagonia (livestock, silvopastoral plans and timber harvesting) do not consider the direct or indirect consequences on guanaco populations. The challenge, therefore, is to generate management decisions to avoid either guanacos or domestic herbivores from becoming detrimental to the sustainability of managed forested ecosystems.

Keywords

Browsing Fecal micro-histological analysis Forest management Landscape analysis Plant life forms 

Abbreviations

NAF

Nothofagus antarctica forests

NPF

N. pumilio forests

OHF

Old harvested N. pumilio forests

PUF

Primary unmanaged N. pumilio forests

RHF

Recently harvested N. pumilio forests

References

  1. Anderson CB, Martínez Pastur G, Lencinas MV, Wallem P, Moorman MC, Rosemond AD (2009) Do introduced North American beavers engineer differently in southern South America? An overview with implications for restoration. Mammal Rev 39(1):33–52CrossRefGoogle Scholar
  2. Baldi R, Albon SD, Elston DA (2001) Guanacos and sheep: evidence for continuing competition in arid Patagonia. Oecologia 129:561–570Google Scholar
  3. Baldi R, Pelliza Sbriller A, Elston D, Albon SD (2004) High potential for competition competition between guanacos and sheep in Patagonia. J Wildl Manage 68(4):924–938CrossRefGoogle Scholar
  4. Belovsky GE (1984) Moose and snowshoe hare competition and a mechanistic explanation from foraging theory. Oecologia 61:150–159CrossRefGoogle Scholar
  5. Bonino N, Fernández E (1994) Distribución general y abundancia relativa de guanacos (Lama guanicoe) en diferentes ambientes de Tierra del Fuego, Argentina. Ecol Aust 4(2):79–85Google Scholar
  6. Bonino N, Pelliza Sbriller A (1991) Comparación de las dietas del guanaco, ovino y bovino en Tierra del Fuego, Argentina. Turrialba 41(8):452–457Google Scholar
  7. Borgina M, Vilá BL, Cassini MH (2008) Interaction between wild camelids and livestock in an Andean semi-desert. J Arid Environ 72:2150–2158CrossRefGoogle Scholar
  8. Borgina M, Vilá BL, Cassini MH (2010) Foraging ecology of Vicuña, Vicugna vicugna, in dry Puna of Argentina. Small Rumin Res 88:44–53CrossRefGoogle Scholar
  9. Braun Blanquet J (1979) Fitosociología: Bases para el estudio de las comunidades vegetales. Ed Blume, Madrid, p 820Google Scholar
  10. Cavieres LA, Fajardo A (2005) Browsing by guanaco (Lama guanicoe) on Nothofagus pumilio forest gaps in Tierra del Fuego, Chile. For Ecol Manage 204:237–248CrossRefGoogle Scholar
  11. Collantes MB, Anchorena J, Cingolani AM (1999) The steppes of Tierra del Fuego: floristic and growth form patterns controlled by soil fertility and moisture. Plant Ecol 140:61–75CrossRefGoogle Scholar
  12. Correa MN (1969–1998) Flora Patagónica. Colección Científica INTA Tomo 8, Partes II, III, IVb, V, VI y VII. INTA, Buenos AiresGoogle Scholar
  13. Deferrari G, Camilion C, Martínez Pastur G, Peri P (2001) Changes in Nothofagus pumilio forest biodiversity during the forest management cycle: birds. Biodiv Conserv 10(12):2093–2108CrossRefGoogle Scholar
  14. Ducid MG, Murace M, Cellini JM (2005) Diversidad fúngica en el filoplano de Osmorhiza spp. relacionado con el sistema de regeneración empleado en bosques de Nothofagus pumilio en Tierra del Fuego, Argentina. Bosque 26(1):33–42Google Scholar
  15. Edenius L, Ericsson G, Naslund P (2002) Selectivity by moose versus the spatial distribution of aspen: a natural experiment. Ecography 25:289–294CrossRefGoogle Scholar
  16. Frangi JL, Richter LL (1994) Balances hídricos de bosques de Nothofagus de Tierra del Fuego. Rev Fac Agron 70:65–79Google Scholar
  17. Gea G, Martínez Pastur G, Cellini JM, Lencinas MV (2004) Forty years of silvicultural management in southern Nothofagus pumilio (Poepp. et Endl.) Krasser primary forests. For Ecol Manage 201:335–347CrossRefGoogle Scholar
  18. Hansen RM, Lucich GC (1978) A field procedure and study design for fecal collections to be used to determine wildlife and livestock food habits. Colorado State University, ColoradoGoogle Scholar
  19. Holechek JL, Gross BD (1982) Evaluation of different calculation procedures for microhistological analysis. J Range Manage 36:721–723CrossRefGoogle Scholar
  20. Huston MA (1994) Biological diversity. The coexistence of species on changing landscapes. Cambridge University Press, CambridgeGoogle Scholar
  21. Krebs CJ (1989) Ecological Methodology. Harper and Row, New YorkGoogle Scholar
  22. Latour M, Pelliza Sbriller A (1981) Clave para la determinación de la dieta de herbívoros en el noroeste de la Patagonia. Rev Investig Agríc INTA 16:109–157Google Scholar
  23. Lencinas MV, Martínez Pastur G, Rivero P, Busso C (2008) Conservation value of timber quality vs. associated non-timber quality stands for understory diversity in Nothofagus forests. Biodiv Conserv 17:2579–2597CrossRefGoogle Scholar
  24. Lencinas MV, Martínez Pastur G, Gallo E, Cellini JM (2009) Alternative silvicultural practices with variable retention improve bird conservation in managed South Patagonian forests. For Ecol Manage 258:472–480CrossRefGoogle Scholar
  25. Lencinas MV, Martínez Pastur G, Gallo E, Cellini JM (2011) Alternative silvicultural practices with variable retention to improve understory plant diversity conservation in managed Southern Patagonia forests. For Ecol Manage doi:10.1016/j.foreco.2011.06.021
  26. Martínez Pastur G, Peri PL, Fernández C, Staffieri G, Rodriguez D (1999) Desarrollo de la regeneración a lo largo del ciclo del manejo forestal de un bosque de Nothofagus pumilio: 2. Incidencia del ramoneo de Lama guanicoe. Bosque 20(2):47–53Google Scholar
  27. Martínez Pastur G, Cellini JM, Peri P, Vukasovic R, Fernández MC (2000) Timber production of Nothofagus pumilio forests by a shelterwood system in Tierra del Fuego (Argentina). For Ecol Manage 134:153–162CrossRefGoogle Scholar
  28. Martínez Pastur G, Peri PL, Fernández MC, Staffieri G, Lencinas MV (2002) Changes in understory species diversity during the Nothofagus pumilio forest management cycle. J For Res 7:165–174CrossRefGoogle Scholar
  29. Martínez Pastur G, Lencinas MV, Cellini JM, Peri PL, Soler Esteban R (2009) Timber management with variable retention in Nothofagus pumilio forests of southern Patagonia. For Ecol Manage 258:436–443CrossRefGoogle Scholar
  30. Martínez Pastur G, Cellini JM, Lencinas MV, Barrera M, Peri PL (2011) Environmental variables influencing regeneration of Nothofagus pumilio in a system with combined aggregated and dispersed retention. For Ecol Manage 261:178–186CrossRefGoogle Scholar
  31. McInnis ML, Vavra M (1987) Dietary relationships among feral horses, cattle, and pronghorn in southeastern Oregon. J Range Manage 40(1):60–66CrossRefGoogle Scholar
  32. Mishra C, Van Wieren SE, Ketner P, Heitkonig IMA, Prins HHT (2004) Competition between domestic livestock and wild bharal (Pseudois nayaur) in the Indian Trans-Himalaya. J Appl Ecol 41:344–354CrossRefGoogle Scholar
  33. Montes C, De Lamo DA, Zavatti J (2000) Distribución de abundancias de guanacos (Lama guanicoe) en los distintos ambientes de Tierra del Fuego, Argentina. J Neotrop Mammal 7:23–31Google Scholar
  34. Moore D (1983) Flora of Tierra del Fuego. Anthony Nelson, EnglandGoogle Scholar
  35. Mysterud A (2000) Diet overlap among ruminants in Fennoscandia. Oecologia 124:130–137CrossRefGoogle Scholar
  36. Pauchard A, Ugarte E, Millán J (2000) A multiscale method for assessing vegetation baseline of Environmental Impact Assessment (EIA) in protected areas of Chile. In: McCool SF, Cole DN, Borrie WT, O’Loughlin J (eds) Wilderness science in a time of change conference. USDA Forest Service, Rocky Mountain Research Station, US, pp 111–116Google Scholar
  37. Peri PL (2005) Sistemas silvopastoriles en ñirantales. IDIA XXI Forestal 8:255–259Google Scholar
  38. Pianka ER (1973) The structure of lizard communities. Annu Rev Ecol Syst 4:53–74CrossRefGoogle Scholar
  39. Posse G, Anchorena J, Collantes MB (2000) Spatial micro-patterns in the steppe of Tierra del Fuego induced by sheep grazing. J Veg Sci 11:43–50CrossRefGoogle Scholar
  40. Promis A, Caldentey J, Ibarra M (2010) Microclima en el interior de un bosque de Nothofagus pumilio y el efecto de una corta de regeneración. Bosque 31(2):129–139Google Scholar
  41. Puig S, Videla F, Cona MI (1997) Diet and abundance of the guanaco (Lama guanicoe Müller) in four habitats of northern Patagonia, Argentina. J Arid Environ 36:343–357CrossRefGoogle Scholar
  42. Pulido F, Díaz B, Martínez Pastur G (2000) Incidencia del ramoneo del guanaco (Lama guanicoe) sobre la regeneración de lenga (Nothofagus pumilio) en bosques de Tierra del Fuego, Argentina. Inv Agr Sist Rec For 9(2):381–394Google Scholar
  43. Raedeke K (1978) El guanaco en Magallanes, Chile: su distribucion y biología. Publicacion Tecnica Nº 4. CONAF, Santiago de ChileGoogle Scholar
  44. Raedeke K (1980) Food habitats of the guanaco (Lama guanicoe) of Tierra del Fuego, Chile. Turrialba 30:77–181Google Scholar
  45. Ragonese AM (1981) Anatomía foliar de especies sudamericanas de Nothofagus Bl. (Fagaceae). Darwiniana 23(2–4):587–603Google Scholar
  46. Rebertus A, Kitzberger T, Veblen T, Roovers L (1997) Blowdown history and landscape patterns in the Andes of Tierra del Fuego, Argentina. Ecology 78(3):678–692CrossRefGoogle Scholar
  47. Schoener TW (1974) Competition and the form of habitat shift. Theor Popul Biol 6:265–307PubMedCrossRefGoogle Scholar
  48. Sepúlveda L, Pelliza A, Manacorda M (2004) Importancia de los tejidos no epidérmicos en el microanálisis de dieta. Ecol Aust 14:31–38Google Scholar
  49. Skarpe C, Hester AJ (2007) The impacts of browsing and grazing on plant population dynamics. In: Gordon I, Prins H (eds) Ecology of grazing and browsing of mammalian herbivores. Springer Verlag, Berlin, pp 217–262Google Scholar
  50. Spagarino C, Martínez Pastur G, Peri P (2001) Changes in Nothofagus pumilio forest biodiversity during the forest management cycle: insects. Biodiv Conserv 10(12):2077–2092CrossRefGoogle Scholar
  51. Sparks D, Malechek JC (1968) Estimating percentage dry weight in diets using a microscopic technique. J Range Manage 21:264–265CrossRefGoogle Scholar
  52. Williams O (1969) An improved technique for identification of plants fragments in herbivore feces. J Range Manage 22(2):51–52CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Rosina Soler Esteban
    • 1
  • Guillermo Martínez Pastur
    • 1
  • María Vanessa Lencinas
    • 1
  • Laura Borrelli
    • 2
  1. 1.Centro Austral de Investigaciones Científicas (CADIC CONICET)Tierra del FuegoArgentina
  2. 2.Instituto Nacional de Tecnología Agropecuaria (INTA EEA Bariloche)Río NegroArgentina

Personalised recommendations