Agroforestry Systems

, Volume 85, Issue 3, pp 331–349 | Cite as

Landscape vulnerability to wildfires at the forest-agriculture interface: half-century patterns in Spain assessed through the SISPARES monitoring framework

  • M. Ortega
  • S. Saura
  • S. González-Avila
  • V. Gómez-Sanz
  • R. Elena-Rosselló
Article

Abstract

Large-scale socioeconomic changes in recent decades have driven shifts in the structure of Spanish rural landscapes, particularly in those located at the forest-agriculture interface (FAI), as well as in their wildfire regime. Using data from more than 200 16 km2 landscape plots in Spain surveyed between 1956 and 2008 through the SISPARES monitoring framework, we assessed the FAI vulnerability to wildfires and identified the main landscape structural factors related to an increased number of wildfire events. We found that the most vulnerable landscapes were those with high road density, high diversity of land uses and, most importantly, with fine-grained forest-agriculture mixtures. Ignition frequency was lower in those landscapes where crops and woodlands coexisted but distributed in large and well-separated patches, and much lower where both land uses were combined within an integrated production and management system (“dehesas”). We discuss the geographical distribution patterns and temporal trends of the different FAI types during recent decades. We conclude that such approach is useful to forecast the mutual interactions between land use pattern changes and wildfire regime in the Mediterranean agroforestry mosaics. This would also provide an ecological base for developing a complementary, cost-effective and durable passive strategy of wildfire management targeted to modify the inherent FAI susceptibility to ignition events.

Keywords

Agroforestry mosaics Landscape dynamics Spatial pattern vulnerability Structural fire risk Wildfire occurrence 

References

  1. Agee JK, Skinner CN (2005) Basic principles of forest fuel reduction treatments. For Ecol Manag 211:83–96CrossRefGoogle Scholar
  2. Alexandrian D, Esnault F, Calabri G (1998) Forest fires in the Mediterranean area. FAO Corporate Document Repository, http://www.fao.org/docrep/x1880s/x1880s07.htm
  3. Ayuda MI, Collantes F, Pinilla V (2010) From locational fundamentals to increasing returns: The spatial concentration of population in Spain, 1787–2000. J Geograph Syst 12(1):25–50CrossRefGoogle Scholar
  4. Badia A, Pallares M (2006) Spatial distribution of ignitions in Mediterranean periurban and rural areas: the case of Catalonia. Int J Wildland Fire 15:187–196CrossRefGoogle Scholar
  5. Bessie WC, Johnson EA (1995) The relative importance of fuels and weather on fire behavior in subalpine forests. Ecology 76(3):747–762CrossRefGoogle Scholar
  6. Bond WJ, Woodward FI, Midgley GF (2004) The global distribution of ecosystems in a world without fire. New Pytologist 165:525–538CrossRefGoogle Scholar
  7. Bunce RGH, Barr CJ, Clarke RT, Howard DC, Lane AMJ (1996) The ITE meriewood land classification of Great Britain. J Biogeogr 23:625–634CrossRefGoogle Scholar
  8. Campos P, Caparrós A, Cerdá E, Huntsinger L, Standiford R (2007) Modeling multifunctional agroforestry systems with environmental values: Dehesa in Spain and woodland ranches in california handbook of operations research. Nat Resour Int Ser Oper Res Manag Sci 99(1):33–52Google Scholar
  9. Catry FX, Rego FC, Bação FL, Moreira F (2009) Modelling and mapping wildfire ignition risk in Portugal. Int J Wildland Fire 18(8):921–931CrossRefGoogle Scholar
  10. Chas-Amill ML, Touza J, Prestemon JP (2010) Spatial distribution of human-caused forest fires in Galicia (NW Spain). In: WIT transactions on ecology and the environment, vol 137. WIT Press, Southampton, www.witpress.com. ISSN 1743-3541 (online) doi:10.2495/FIVAI00221
  11. Chuvieco E, Aguado I, Yebra M, Nieto H, Salas J, Martín MP, Vilar L, Martínez FJ, Martín S, Ibarra P, De la Riva J, Baeza J, Rodríguez F, Molina J, Herrera MA, Zamora R (2010) Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol Model 221:46–58CrossRefGoogle Scholar
  12. Council of the European Union (2010) Council conclusions on prevention of forest fires within the European Union. In: 3010th general affairs council meeting. LuxembourgGoogle Scholar
  13. Di Castri F, Mooney HA (eds) (1973) Mediterranean type ecosystems. Origin and structure. ecological studies 7. Springer, BerlinGoogle Scholar
  14. EEA (1995) CORINE land cover. Part II. Nomenclature. Europeam Environmental AgencyGoogle Scholar
  15. EGIF (2009) Los incendios forestales en España. Technical Report of “Area de Defensa Contra Incendios Forestales” of the Spanish Ministry of EnvironmentGoogle Scholar
  16. Elena-Rosselló R, Tella G, Castejón M (1997) Clasificación biogeoclimática de España peninsular y balear. Ministerio de Agricultura pesca y Alimentación, Madrid, SpainGoogle Scholar
  17. Elena-Rosselló R, Bolaños F, Gómez V, González S, Ortega M, García del Barrio JM (2005) The SISPARES (Spanish Rural Landscape Monitoring System) experience. Proceedings of European IALE conference. Landscape ecology in the Mediterranean: inside and outside approaches. Faro, PortugalGoogle Scholar
  18. FAO (2005) Community based fire management in Spain. Forest protection working papers, working paper FFM/4/E. Forest Resources Development Service, Forest Resources Division, FAO, Rome Italy Forestry Department. Based on the work of Mr Ricardo Velez Ministry of Environment Madrid, SpainGoogle Scholar
  19. Finney MA (2001) Design of regular landscape fuel treatment patterns for modifying fire growth and behavior. Forest Science 47:219–229Google Scholar
  20. Flannigan MD, Harrington JB (1988) A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada (1953–80). J Appl Meteorol 27:441–452CrossRefGoogle Scholar
  21. Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge, UKGoogle Scholar
  22. Forman RTT, Godron M (1986) Landscape ecology. Wiley, New YorkGoogle Scholar
  23. García del Barrio JMG, Bolaños F, Ortega M, Elena-Rosselló R (2004) Dynamics of land use and land cover change in Dehesa Landscapes of the REDPARES network between 1956 and 1998. In: Schnabel S, Ferreira A (eds) Advances in geoecology: sustainability of agrosilvopastoral systems—Dehesa, Montados, vol 37. Catena GmBh, Reiskirchen, Germany, pp 47–54Google Scholar
  24. Gralewicz, NJ (2010) Spatial and temporal patterns of wildfire occurrence and susceptibility in Canada. Electronic thesis and dissertations. Department of Geography, University of Victoria, CanadáGoogle Scholar
  25. Hely C, Fortin MJ, Anderson KR, Bergeron Y (2010) Landscape composition influences local pattern of fire size in the eastern Canadian boreal forest: role of weather and landscape mosaic on fire size distribution in mixedwood boreal forest using the prescribed fire analysis system. Int J Wildland Fire 19(8):1099–1109CrossRefGoogle Scholar
  26. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  27. Hoggart K (1997) Rural migration and counter urbanization in the European periphery: The case of Andalucía. Sociologia Ruralis. Wiley Online LibraryGoogle Scholar
  28. Honnay O, Piessens K, Van landuyt W, Hermy M, Gulinck H (2003) Satellite based land use and landscape complexity indices as predictors for regional plant species diversity. Landsc Urban Plan 63:241–250CrossRefGoogle Scholar
  29. Houérou HN (1993) Land degradation in Mediterranean Europe: can agroforestry be a part of the solution? A prospective review. Agrofor Syst 21(1):43–61CrossRefGoogle Scholar
  30. INE (2008) Anuario Estadístico de España. Instituto Nacional de EstadísticaGoogle Scholar
  31. Jongman RHG, Bunce RGH (2008) Farmland features in the European Union: a description and pilot inventory of their distribution. Report 31–08-2008. Alterra, Wageningen, URGoogle Scholar
  32. Krumel JR, Gardner RH, Sugihara G, O’Neill RV (1987) Landscape patterns in a disturbed environment. Oikos 48:321–324CrossRefGoogle Scholar
  33. Malamud BD, Millington JDA, Perry GLW (2005) Characterizing wildfire regimes in the United States. PNAS 102(13):4694–4699PubMedCrossRefGoogle Scholar
  34. MARM (1996–2005, 2006, 2007, 2008) Los incendios Forestales de España. Technical Reports of Dirección General de Medio Natural y Política Territorial del Ministerio de Medio Ambiente y Medio Rural y Marino. http://www.marm.es/es/biodiversidad/temas/defensa-contra-incendios-forestales/estadisticas-de-incendios-forestales/default.aspx
  35. Martínez S, Ramil P, Chuvieco E (2010) Monitoring loss of biodiversity in cultural landscapes. New Methodol Satel Landsc Urban Plan 94:127–140CrossRefGoogle Scholar
  36. Mazzoleni S, di Pasquale G, Mulligan M, di Martino P, Rego F (eds) (2005) Recent dynamics of the Mediterranean vegetation and landscape. Wiley, LondonGoogle Scholar
  37. McGarigal K, Marks BJ (1995) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. USDA For Serv Gen Tech Rep PNW-351Google Scholar
  38. Metzger MJ, Bunce RGH, van Eupen M, Mirtl M (2010) An assessment of long term ecosystem research activities across European socio-ecological gradients. J Environ Manag 91:1357–1365CrossRefGoogle Scholar
  39. Moreno J, Viedma O, Zavala G, Luna B (2011) Landscape variables influencing forest fires in Central Spain. Int J Wildland Fire (in press)Google Scholar
  40. Naveh Z (1975) The evolutionary significance of fire in the Mediterranean region. Vegetatio 29(3):199–208CrossRefGoogle Scholar
  41. Ortega M, Bunce RGH, García del Barrio JM, Elena-Rosselló R (2008) The relative dependence of Spanish landscape pattern on environmental and geographical variables over time. Investigación Agraria: Sistemas y Recursos Forestales 17(2):114–129Google Scholar
  42. Ortega M, Metzger M.J, Bunce RGH, Wrbka T, Allard A, Jongman RHG, Elena-Rosselló R (2011) The potential for integration of environmental data from regional stratifications into an European monitoring framework. J Environ Plan Manag (in press)Google Scholar
  43. Padilla M, Vega-García C (2011) On the comparative importance of fire danger rating indices and their integration with spatial and temporal variables for predicting daily human-caused fire occurrences in Spain. Int J Wildland Fire 20(1):46–58Google Scholar
  44. Pausas JG (2004) Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Climatic Change 63:337–350CrossRefGoogle Scholar
  45. Pérez-Soba M, San Miguel Ayanz A, Elena-Rosselló R (2007) Complexity in the simplicity: the Spanish dehesas: the secret of an ancient cultural landscape with high nature value still functioning in the 21st century. In: Pedroli B, van Doorn A, de Blust G, Paracchini ML, Wascher D, Bunce F (eds) Europe’s living landscapes. Essays exploring our identity in the countryside. KNNV Publishing, The Netherlands, in cooperation with Landscape Europe, pp 369–387Google Scholar
  46. Pickett STA, White PS (1985) Patch dynamics: a synthesis. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic Press, New York, pp 371–384Google Scholar
  47. Pineda FD (2001) Intensification, rural abandonment and nature conservation in Spain. In: Bunce RGH, Pérez-Soba M, Elbersen BS, Prados MJ, Andersen E., Bell M. Smeets PJAM (eds) Example of European agro-environment schemes and livestocks systems and their influence on Spanish cultural landscapes. Proceedings of a European workshop, Soto del Real, 13–15 July 2000, Wageningen, Alterra-Rapport 309, pp 23–46Google Scholar
  48. Piñol J, Terradas J, Lloret F (1998) Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Clim Change 38:345–357CrossRefGoogle Scholar
  49. Pinto-Correia T (2000) Future development in portuguese rural areas: how to manage agricultural support for landscape conservation? Landsc Urban Plan 50:95–106CrossRefGoogle Scholar
  50. Rey Benayas JM, Martins A, Nicolau JM, Schulz JJ (2007) Abandonment of agricultural land: an overview of drivers and consequences. CAB reviews: perspectives in agriculture, veterinary science, nutrition and natural resources 2, No. 057Google Scholar
  51. Riitters KH, O’Neill RV, Hunsaker CT, Wickham JD, Yakee DH, Timmins SP, Jones KB, Jackson BL (1995) A factor analysis of landscape pattern and structure metrics. Landscape Ecol 10(1):23–39CrossRefGoogle Scholar
  52. Romero-Calcerrada R, Novillo CJ, Millington JDA, Gomez-Jimenez I (2008) GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain). Landscape Ecol 23:341–354CrossRefGoogle Scholar
  53. Romme WH (1982) Fire and landscape diversity in subalpine forests of Yellowstone National Park. Ecol Monogr 52:199–221CrossRefGoogle Scholar
  54. Scheller RM, Mladenoff DJ (2004) A forest growth and biomass module for a landscape simulation model, LANDIS: design, validation, and application. Ecol Model 180:211–229CrossRefGoogle Scholar
  55. Schmidt D, Taylor AH, Skinner CN (2008) The influence of fuels treatment and landscape arrangement on simulated fire behavior, Southern Cascade range, California. For Ecol Manag 255:3170–3184CrossRefGoogle Scholar
  56. Scott JH, Burgan RE (2005) Standard fire behavior fuel models: a comprehensive set for use with Rothermel’s surface fire spread model. Gen Tech Rep RMRS-GTR-153. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, COGoogle Scholar
  57. Sociedad Española de Ciencias Forestales (2009) Situación de los bosques y del Sector forestal en España. V Congreso Forestal de España, ÁvilaGoogle Scholar
  58. Stocks BJ (2002) Large forest fires in Canada, 1959–1997. Journal of Geophysical Research- Atmospheres 108:511–512Google Scholar
  59. Trabaud L (1980) Impact biologique et écologique des feux de végétation surl’ organisation, la structure et l’ evolution de la végétation des garrigues du Bas-Languedoc. Thése d’Etat Univ Sci Tech Languedoc, MontpellierGoogle Scholar
  60. Trabaud LV, Cristensen NL, Gill AM (1993) Historical biogeography of fire in temperate and Mediterranean ecosystems. In: Crutzen PJ, Goldammer JG (eds) Fire in the environment: The ecological atmospheric and climatic importance of vegetation fires. Wiley, Chichester, UK, pp 277–295Google Scholar
  61. Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20:171–197CrossRefGoogle Scholar
  62. Turner MG, Hargrove WH, Gardner RH, Romme WH (1994) Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. J Veg Sci 5:731–742CrossRefGoogle Scholar
  63. Vázquez A, Moreno JM (1998) Patterns of lightning and people-caused fires in Peninsular Spain. Int J Wildland Fire 8(2):103–115CrossRefGoogle Scholar
  64. Vázquez A, García del Barrio JM, Ortega M, Sánchez-Palomares O (2006) Recent fire regime in peninsular Spain in relation to forest potential productivity and population density. Int J Wildland Fire 15:397–405CrossRefGoogle Scholar
  65. Vilar L, Woolford DG, Martell DL, Martín P (2010) A model for predicting human-caused wildfire occurrence in the region of Madrid, Spain. Int J Wildland Fire 19(3):325–337CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. Ortega
    • 1
    • 3
  • S. Saura
    • 2
  • S. González-Avila
    • 3
  • V. Gómez-Sanz
    • 3
  • R. Elena-Rosselló
    • 3
  1. 1.Unit of Forest Fires, Department of Silviculture and Forest Management, Centre of Forest Research CIFORInstituto National de Investigación y Tecnología Agraria y Alimentaria, INIAMadridSpain
  2. 2.Department of Forest Management and EconomicsUniversidad Politécnica de MadridMadridSpain
  3. 3.ECOGESFOR-UPM, Research Group of Ecology and Sustainable Forest Management, Escuela de Ingeniería Forestal y del Medio NaturalUniversidad Politécnica de MadridMadridSpain

Personalised recommendations