Agroforestry Systems

, Volume 82, Issue 3, pp 285–301 | Cite as

Coffee agroecosystem performance under full sun, shade, conventional and organic management regimes in Central America

  • J. Haggar
  • M. Barrios
  • M. Bolaños
  • M. Merlo
  • P. Moraga
  • R. Munguia
  • A. Ponce
  • S. Romero
  • G. Soto
  • C. Staver
  • E. de M. F. Virginio
Article

Abstract

Changes in coffee economics are leading producers to reduce agrochemical use and increase the use of shade. Research is needed on how to balance the competition from shade trees with the provision of ecological services to the coffee. In 2000, long-term coffee experiments were established in Costa Rica and Nicaragua to compare coffee agroecosystem performance under full sun, legume and non-legume shade types, and intensive and moderate conventional and organic inputs. Coffee yield from intensive organic production was not significantly different from intensive conventional in Nicaragua, but in Costa Rica it was lower during three of the six harvests. Full sun coffee production over 6 years was greater than shaded coffee in Costa Rica (61.8 vs. 44.7 t ha−1, P = 0.0002). In Nicaragua, full sun coffee production over 5 years (32.1 t ha−1) was equal to coffee with shade that included Tabebuia rosea (Bertol.) DC., (27–30 t ha−1) and both were more productive (P = 0.03) than coffee shaded with Inga laurina (Sw.) Willd. (21.6 t ha−1). Moderate input organic production was significantly lower than other managements under all shade types, except in the presence of Erythrina poepiggina (Walp.) O.F. Cook. Inga and Erythrina had greater basal area and nutrient recycling from prunings than other shade species. Intensive organic production increased soil pH and P, and had higher K compared to moderate conventional. Although legume shade trees potentially provide ecological services to associated coffee, this depends on management of the competition from those same trees.

Keywords

Erythrina poepiggiana Ecological services Inga laurina Nitrogen mineralization Nutrient balance Nutrient recycling Sustainable coffee production Tabebuia rosea Terminalia amazonia 

Notes

Acknowledgements

This research was conducted with funding from the Norwegian Ministry of Foreign Affairs and United States Department of Agriculture. We acknowledge and thank our research assistants, Elvin Navarette, Ledys Navarette and Luis Romero for their considerable dedication in maintaining these experiments.

References

  1. Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility. A handbook of methods, 2nd edn. CAB International, UKGoogle Scholar
  2. Babar L, Zak D (1995) Nitrogen cycling in coffee agroecosystems: net nitrogen mineralization and denitrification in the presence and absence of shade trees. J Environ Qual 24:227–233CrossRefGoogle Scholar
  3. Beer J, Muschler R, Somarriba E, Kass D (1998) Shade management in coffee and cacao plantations—a review. Agrofor Syst 38:139–164CrossRefGoogle Scholar
  4. CEPAL (2002) Centroamérica, El impacto de la caída de los precios de café en 2001. Comisión Económica para Latinoamérica y el Caribe. LC/MEX/R.822Google Scholar
  5. Fassbender HW (1993) Modelos edafológicos de sistemas agroforestales. Serie de materiales de enseñanza No 3. CATIE, Costa RicaGoogle Scholar
  6. Fernandez C, Muschler R (1999) Aspectos de la sostenibilidad de los sistemas de cultivo de café en América Central. In: Bertrand B, Rapidel B (eds) Desafíos de la Caficultura en Centroamérica. IICA, Costa Rica, pp 69–96Google Scholar
  7. Guharay F, Monterroso D, Muschler R, Staver C (2001) Designing pest-suppressive multi-strata perennial crop systems: shade-grown coffee in Central America as a case study. Agrofor Syst 53:151–170CrossRefGoogle Scholar
  8. Haggar JP, de Melo E, Staver C (2001) Sostenibilidad y sinergismo en sistemas agroforestales con café: estudio de interacciones entre plagas, fertilidad de suelo y árboles de sombra. Agroforestería en Las Américas. 8(29):49–51Google Scholar
  9. Harmand J, Avila H, Dambrine E, Skiba U, de Miguel S, Renderos R, Oliver R, Jimenez F, Beer J (2007) Nitrogen dynamics and soil nitrate retention in a Coffea arabicaEucalyptus deglupta agroforestry system in Southern Costa Rica. Biogeochemistry 85:125–139CrossRefGoogle Scholar
  10. Hergoual’ch K, Harmand J, Skiba U (2007) Soil N2O emissions and carbon balance in coffee monocultures and agroforestry plantations on Andosols in Costa Rica. Proceedings of IUFRO Symposium on Multistrata Agroforestry Systems, CATIE, Costa Rica, Sept 2007. http://web.catie.ac.cr/cd_multiestrata/Poster/session2/Soil.pdf. Cited 15 June 2009
  11. InfoStat (2004). InfoStat versión 2004. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, ArgentinaGoogle Scholar
  12. Lemmon P (1956) A spherical densitometer for estimating overstory density. For Sci 2:314–320Google Scholar
  13. Lyngbæk AE, Muschler RG, Sinclair FL (2001) Productivity and profitability of multistrata organic versus conventional coffee farms in Costa Rica. Agrofor Syst 53:205–213CrossRefGoogle Scholar
  14. Merlo M (2007) Comportamiento productivo del poró (Erythrina poeppigiana), amarillón (Terminalia amazonia), cashá (Chloroleucon eurycyclum) y el café (Coffea arabica var caturra) en sistemas agroforestales bajo manejo convencionales y orgánicos en Turrialba, Costa Rica. MSc thesis, CATIE, Costa RicaGoogle Scholar
  15. Montenegro GEJ (2005). Efecto de la dinámica de la materia de nutrientes de la biomasa de tres tipos de árboles de sombra en sistemas de manejo de café orgánico y convencional. MSc thesis, CATIE Costa RicaGoogle Scholar
  16. Muschler RG (2001) Shade improves coffee quality in a sub-optimal coffee zone of Costa Rica. Agrofor Syst 85:131–139CrossRefGoogle Scholar
  17. Palm CA, Gachengo CN, Delve RJ, Cadisch G, Giller KE (2001) Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database. Agric Ecosyst Environ 83:27–42CrossRefGoogle Scholar
  18. Perfecto I, Rice R, Greenberg R, van der Moort M (1996) Shade coffee: a disappearing refuge for biodiversity. Bioscience 46:598–608CrossRefGoogle Scholar
  19. Porras CM (2006) Efecto de los sistemas agroforestales de café orgánico y convencional sobre las características de suelos en el Corredor Biológico Turrialba-Jiménez, Costa Rica. MSc thesis CATIE, Costa RicaGoogle Scholar
  20. Reynolds J (1991) Soil nitrogen dynamics in relation to groundwater contamination in the Valle Central, Costa Rica. PhD thesis., University of MichiganGoogle Scholar
  21. Rice R, Ward J (1996) Coffee, conservation, and Ccommerce in the western hemisphere. Smithsonian Migratory Bird Center, National Resources Defense Fund, Washington, DCGoogle Scholar
  22. Romero SA (2006) Aporte de biomasa y reciclaje de nutrientes en seis sistemas agroforestales de café (Coffea arabica var. Caturra), con tres niveles de manejo. MSc thesis, CATIE, Costa RicaGoogle Scholar
  23. Siman J (1992) Contradicciones entre decisiones macro y microeconómicas: El caso de café en Nicaragua. El Observador Económico (FIDEG, Managua, Nicaragua) 9:3–4Google Scholar
  24. Van der Vossen HAM (2005) A critical analysis of the agronomic and economic sustainability of organic coffee production. Exp Agric 41:449–473CrossRefGoogle Scholar
  25. Virginio Filho E, Haggar JP, Staver CP (2002) Sostenibilidad y sinergismo en sistemas agroforestales con café: Estudio de largo plazo de interacciones agroecológicas. Café y Cacao 3:31–35Google Scholar
  26. Zuluaga J (2004) Dinámica de la material orgánica del suelo en sistemas agroforestales con Erythrina poeppigiana en Costa Rica. MSc thesis, CATIE, Costa RicaGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • J. Haggar
    • 1
    • 7
  • M. Barrios
    • 1
  • M. Bolaños
    • 2
  • M. Merlo
    • 3
  • P. Moraga
    • 2
  • R. Munguia
    • 4
  • A. Ponce
    • 5
  • S. Romero
    • 3
  • G. Soto
    • 3
  • C. Staver
    • 6
  • E. de M. F. Virginio
    • 3
  1. 1.Centro Agronómico Tropical de Investigación y Enseñanza, CATIEManaguaNicaragua
  2. 2.UNICAFEManaguaNicaragua
  3. 3.CATIETurrialbaCosta Rica
  4. 4.Universidad Nacional AgráriaManaguaNicaragua
  5. 5.Instituto Nacional Tecnológica AgráriaMasatepeNicaragua
  6. 6.BioversityMontpellierFrance
  7. 7.NRI, University of Greenwich, Chatham MaritimeKentUK

Personalised recommendations