Advertisement

Agroforestry Systems

, Volume 82, Issue 2, pp 173–181 | Cite as

Leaf-level responses to light in two co-occurring Quercus (Quercus ilex and Quercus suber): leaf structure, chemical composition and photosynthesis

  • M. VazEmail author
  • J. Maroco
  • N. Ribeiro
  • L. C. Gazarini
  • J. S. Pereira
  • M. M. Chaves
Article

Abstract

We studied morphological, biochemical and physiological leaf acclimation to incident Photon-Photosynthetic-Flux-Density (PPFD) in Quercus ilex (holm oak) and Quercus suber (cork oak) at Mediterranean evergreen oak woodlands of southern Portugal. Specific leaf area (SLA) decreased exponentially with increasing PPFD in both species. Q. ilex had lower SLA values than Q. suber. Leaf nitrogen, cellulose and lignin concentration (leaf area-based) scaled positively with PPFD. Maximum rate of carboxylation (Vcmax), capacity for maximum photosynthetic electron transport (Jmax), rate of triose-P utilization (VTPU) and the rate of nonphotorespiratory light respiration (Rd) were also positively correlated with PPFD in both Quercus species, when expressed in leaf area but not on leaf mass basis. Q suber showed to have higher photosynthetic potential (Vcmax, J max m and V TPU m ) and a higher nitrogen efficient nitrogen use than Q.ilex. Leaf chlorophyll concentration increased with decreasing PPFD, improving apparent quantum use efficiency (Φ) in both Quercus species. We concluded that, in Q.ilex and Q.suber, leaf structural plasticity is a stronger determinant for leaf acclimation to PPFD than biochemical and physiological plasticity.

Keywords

Light Nitrogen Photosynthesis Quercus ilex Quercus suber SLA 

Notes

Acknowledgments

We thank to I. Carcajeiro and C. Grilo for collaboration in field work.

References

  1. Arnon DI (1949) Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta bulgaris. Plant Physiol 24:1–15PubMedCrossRefGoogle Scholar
  2. Asner GP, Wessman CA (1997) Scaling PAR absorption from leaf to landscape level in spatially heterogeneous ecosystems. Ecological Modelling 103:81–97. doi: 10.1016/S0304-3800(97)00080.x CrossRefGoogle Scholar
  3. Asner GP, Wessman CA, Archer S (1998) Scale dependence of absorption of photosynthetically active radiation in terrestrial ecosystems. Ecol Appl 8:1003–1021. doi: 10.1890/1051-0761(1998)008[1003:SDOAOP]2.0.CO CrossRefGoogle Scholar
  4. Baldocchi DD, Harley PC (1995) Scaling carbon dioxide and water vapor exchange from leaf to canopy in a deciduous forest. II model testing and application. Plant Cell Environ 18:1157–1173. doi: 10.1111/j.1365-3040.1995.tb00626.x CrossRefGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  6. Brooks JR, Sprugel DG, Hinckley TM (1996) The effect of light aclimatation during and after foliage expansion on photosynthesis of Abies amabilis within the canopy. Oecologia 107:21–32. doi: 10.1007/BF00582231 CrossRefGoogle Scholar
  7. Caldwell MM, Meister HP, Tenhunen JD, Lange OL (1986) Canopy structure, light microclimate and leaf gas exchange of Quercus coccifera L. in a Portuguese macchia: measurements in different canopy layers and simulations with a canopy model. Trees 1:25–41. doi: 10.1007/BF00197022 CrossRefGoogle Scholar
  8. Carreiras JMB, Pereira JMC, Pereira JS (2006) Estimation of tree canopy cover in evergreen oak woodlands using remote sensing. For Ecol Manag 223:45–53. doi: 10.1016/j.foreco.2005.10.056 CrossRefGoogle Scholar
  9. Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osório ML et al (2002) How plants cope with water stress in the field: photosynthesis and growth. Ann Bot 89:907–916. doi: 10.1093/aob/mcf105 PubMedCrossRefGoogle Scholar
  10. David TS, Henriques MO, Kurz-Besson C, Nunes J, Valente F, Vaz M, Pereira JS, Siegwolf R, Chaves MM, Gazarini LC, David JS (2007) Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol 27:793–803. doi: 10.1093/treephys/27.6.793 PubMedGoogle Scholar
  11. Evans JR, Poorter H (2001) Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ 24:755–767. doi: 10.1046/j.1365-3040.2001.00724.x CrossRefGoogle Scholar
  12. FAO (1988) FAO/UNESCO Soil map of the world: revised legend, with corrections. World Soil Resources Report 60. FAO, RomeGoogle Scholar
  13. Faria T, García-Plazaola JL, Abadia A, Cerasoli S, Pereira JS, Chaves MM (1996) Diurnal changes in photoprotective mechanisms in leaves of cork oak (Quercus suber) during summer. Tree Physiol 16:115–123. doi: 10.1093/treephys/16.1-2.115 PubMedGoogle Scholar
  14. Faria T, Silvério D, Breia E, Cabral R, Abadia A, Abadia J, Pereira JS, Chaves MM (1998) Differences in the response of carbon assimilation to summer stress (water deficits, high light and temperature) in four Mediterranean tree species. Physiol Plant 102:419–428. doi: 10.1034/j.1399-3054.1998.1020310.x CrossRefGoogle Scholar
  15. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90. doi: 10.1007/BF00386231 CrossRefGoogle Scholar
  16. Franks PJ, Cowan IR, Farquhar GD (1997) The apparent feedforward response of stomata to air vapour pressure deficit: information revealed by different experimental procedure with two rainforest trees. Plant Cell Environ 20:142–145. doi: 10.1046/j.1365-3040.1997.d01-14.x CrossRefGoogle Scholar
  17. Garcia-Plazaola JI, Faria T, Abadia J, Abadia A, Chaves MM, Pereira JS (1997) Seasonal changes in xanthophyll composition and photosynthesis of cork oak (Quercus suber L.) leaves under mediterranean climate. J Exp Bot 48(314):1667–1674. doi: 10.1093/jxb/48.9.1667 CrossRefGoogle Scholar
  18. Gratani L (1997) Canopy structure, vertical radiation profile and photosynthetic function in a Quercus ilex evergreen forest. Photosynthetica 33(1):139–149. doi: 10.1023/A:1022139608609 CrossRefGoogle Scholar
  19. Harley PC, Baldocchi DD (1995) Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. I. leaf model parameterization. Plant Cell Environ 18:1146–1156. doi: 10.1111/j.1365-3040.1995.tb00625.x CrossRefGoogle Scholar
  20. Harley PC, Tenhunen JD, Lange OL (1986) Use of an analytical model to study limitations on net photosynthesis in Arbutus unedo under field conditions. Oecologia 70:393–401. doi: 10.1007/BF00379502 CrossRefGoogle Scholar
  21. Harley PC, Thomas RB, Reynolds JF, Strain BR (1992) Modelling photosynthesis of cotton grown in elevated CO2. Plant, Cell and Environment 15:271–282. doi: 10.1111/j.1365-3040.1992.tb00974.x CrossRefGoogle Scholar
  22. Hollinger DY (1996) Optimality and nitrogen allocation in a tree canopy. Tree Physiol 16:627–634. doi: 10.1093/treephys/16.7.627 PubMedGoogle Scholar
  23. Kull O, Kruijt B (1999) Acclimation of photosynthesis to light: a mechanistic approach. Funct Ecol 13:24–36. doi: 10.1046/j.1365-2435.1999.00292.x CrossRefGoogle Scholar
  24. Le Roux X, Walcroft AS, Daudet FA, Sinoquet H, Chaves MM, Rodrigues A, Osorio L (2001) Photosynthetic light acclimation in peach leaves: importance of changes in mass: area ratio, nitrogen cconcentration, and leaf nitrogen partitioning. Tree Physiol 21:377–386. doi: 10.1093/treephys/21.6.377 PubMedGoogle Scholar
  25. Mendes MM, Gazarini LC, Rodrigues ML (2001) Acclimation of Myrtus communis to contrasting Mediterranean light environments effects on structure and chemical composition of foliage and plant water relations. Environ Exp Bot 45:165–178. doi: 10.1016/S0098-8472(01)00073-9 PubMedCrossRefGoogle Scholar
  26. Niinemets Ü (2007) Photosynthesis and resource distribution through plant canopies. Plant, Cell and Environment 30:1052–1071. doi: 10.1111/j.1365-3040.2007.01683.x PubMedCrossRefGoogle Scholar
  27. Niinemets Ü, Tenhunen JD (1997) A model separating leaf structural and physiological effects on carbon gain along light gradients for foliage morphological plasticity. Plant Cell Environ 20:845–866. doi: 10.1046/j.1365-3040.1997.d01-133.x CrossRefGoogle Scholar
  28. Niinemets Ü, Valladares F (2004) Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints. Plant Biol 6(3):254–268. doi: 10.1055/s-2004-817881 PubMedCrossRefGoogle Scholar
  29. Niinemets Ü, Bilger W, Kull O, Tenhunen JD (1998) Acclimation to high irradiance in temperate deciduous trees in the field: changes in xanthophyll cycle pool size and in photosynthetic capacity along a canopy light gradient. Plant Cell Environ 21:1205–1218. doi: 10.1046/j.1365-3040.1998.00364.x CrossRefGoogle Scholar
  30. Niinemets Ü, Tenhunen J, Beyschlag W (2004) Spatial and age-dependent modifications of photosynthetic capacity in four Mediterranean oak species. Funct Plant Biol 31:1179–1193. doi: 10.1071/FP04128 CrossRefGoogle Scholar
  31. Pearcy RW (1999) Responses of plants to heterogeneous light environment. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology. Marcel Dekker Inc, New York, pp 270–313Google Scholar
  32. Pereira JS, Beyschlad G, Lange OL, Beyschlad W, Tenhunen JD (1987) Comparative phenology of four mediterranean shrub species growing in Portugal. In: Tenhunen JD, Catarino FM, Lange OL, Oechel WC (eds) Plant response to stress: functional analysis in Mediterranean ecosystems. NATO ASI Séries. Springer-Verlag, Heidelberg, pp 503–513Google Scholar
  33. Pereira JS, Mateus JA, Aires LM, Pita G, Pio C, David JS, Andrade V, Banza J, David TS, Paço TA, Rodrigues A (2007) Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems. The effect of drought. Biogeosciences. 4:791–802. doi: 10.5194/bgd-4-1703-2007 CrossRefGoogle Scholar
  34. Reich PB, Walters MB, Ellsworth DS (1992) Leaf lifespan in relation to leaf, plant and stand characteristics among diverse ecosystems. Ecol Monogr 62:365–392CrossRefGoogle Scholar
  35. Robinson D, Robinson IH (1988) Plasticity in grass species in relation to nitrogen supply. Funct Ecol 2:249–257CrossRefGoogle Scholar
  36. Robyt JF, White BJ (1990) Biochemical techniques. Theory and practice. Waveland Press, Inc, USAGoogle Scholar
  37. Sabaté S, Sala A, Gracia CA (1995) Nutrient concentration in Quercus ilex canopies: seasonal and spatial variation within a catchment. Plant Soil 168–169:297–304. doi: 10.1007/BF00029341 CrossRefGoogle Scholar
  38. Sabaté S, Sala A, Gracia CA (1999) Leaf traits and canopy organization. In: Rodá F, Retana J, Gracia CA, Bellot J (eds) Ecology of Mediterranean evergreen oak forest. Ecological studies. Springer-Verlag, Berlin, pp 121–133Google Scholar
  39. Schlichting C (1986) The evolution of phenotypic plasticity in plants. Ann Rev Ecol Syst 17:667–693. doi: 10.1146/annurev.es.17.110186.003315 CrossRefGoogle Scholar
  40. Scholander PF, Hammel HT, Bradstreet DD, Hemmingsen A (1965) Sap pressure in vascular plants. Science 148:339–346PubMedCrossRefGoogle Scholar
  41. Sharkey TD (1985) Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations. Bot Rev 51:53–105. doi: 10.1007/BF02861058 CrossRefGoogle Scholar
  42. Specht RL, Specht A (1989) Canopy structure in Eucalyptus-dominated communities in Australia along climatic gradients. Acta Oecol Oecol Plant 10:191–213Google Scholar
  43. Takashima T, Hikosaka K, Hirose T (2004) Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species Plant. Cell and Environment 27:1047–1054. doi: 10.1111/j.1365-3040.2004.01209.x CrossRefGoogle Scholar
  44. Valladares F, Pearcy RW (1999) The geometry of light interception by shoots of Heteromeles arbutifolia: morphological and physiological consequences for individual leaves. Oecologia 121:171–182. doi: 10.1007/s004420050919 CrossRefGoogle Scholar
  45. Valladares F, Martínez-Ferri E, Balaguer L, Perez-Corona E, Manrique E (2000) Low leaf-level responses to light and nutrients in Mediterranean evergreen oaks: a conservative resource-use strategy. New Phytol 148:79–91. doi: 10.1046/j.1469-8137.2000.00737.x CrossRefGoogle Scholar
  46. Valladares F, Balaguer L, Martinez-Ferri E, Perez-Corona E, Manrique E (2002) Plasticity, instability and canalization: is the phenotypic variation in seedlings of sclerophyll oaks consistent with the environmental unpredictability of Mediterranean ecosystems? New Phytol 156:457–467. doi: 10.1046/j.1469-8137.2002.00525.x CrossRefGoogle Scholar
  47. Van Soest PJ (1963) Use of detergents in the analysis of fiberous feeds. A rapid method for the determination of fiber and lignin. J Assoc Off Anal Chem 49:5466–5551Google Scholar
  48. Vaz M, Pereira JS, Gazarini LC, David TS, David JS, Rodrigues A, Maroco J, Chaves MM (2010) Drought-induced photosynthetic inhibition and autumn recovery in two Mediterranean oak species (Quercus ilex and Quercus suber). Tree Physiol 30:946–956PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • M. Vaz
    • 1
    Email author
  • J. Maroco
    • 2
  • N. Ribeiro
    • 1
  • L. C. Gazarini
    • 1
  • J. S. Pereira
    • 3
  • M. M. Chaves
    • 3
    • 4
  1. 1.Instituto de Ciências Agrárias e Ambientais MediterrânicasUniversidade de ÉvoraÉvoraPortugal
  2. 2.Instituto Superior de Psicologia AplicadaLisbonPortugal
  3. 3.Instituto Superior de AgronomiaUniversidade Técnica de LisboaLisbonPortugal
  4. 4.Instituto Tecnologia Química e Biológica (ITQB-UNL)OeirasPortugal

Personalised recommendations