Agroforestry Systems

, Volume 80, Issue 3, pp 341–359

Coffee agroforestry systems in Central America: I. A review of quantitative information on physiological and ecological processes

  • Marcel van Oijen
  • Jean Dauzat
  • Jean-Michel Harmand
  • Gerry Lawson
  • Philippe Vaast
Article
  • 656 Downloads

Abstract

Coffee is widely grown across Central America at altitudes between 600 and 2500 m, mostly in association with trees that provide shade and other services. Research on coffee agroforestry systems has identified many environmental factors, management strategies and plant characteristics that affect growth, yield and environmental impact of the system. Much of this literature only presents qualitative estimates of the importance of the different growth determining factors, or highly site-specific estimates. Quantitative information is required to allow statistical analysis or the construction of process-based models of the system. Here, we review the available quantitative information for the latter purpose, with emphasis on the data needs for modelling agroforestry systems common in Central America. Process-based models require environmental data—weather, soil—and data on the physiological characteristics of the coffee plants and trees. Our review showed that the current literature is insufficient to allow full parameterisation of a process-based model for any coffee-tree combination. Information on weather, coffee and trees is highly limited, but soil information seems more adequate. A regional network of replicated multi-factorial experiments, focusing on the interactive effects of different environmental factors, may help address the main knowledge gaps.

Keywords

Coffea arabica Shade trees Soil Climate Management 

References

  1. Aguilar A, Beer JW, Vaast P, Jimenez F, Staver C, Kleinn C (2001) Desarrollo del cafe asociado con Eucalyptus deglupta o Terminalia ivorensis en la etapa de establecimiento. Agroforesteria en las Americas 8:28–31Google Scholar
  2. Akinnifesi FK, Rowe EC, Livesley SJ, Kwesiga F, Vanlauwe B, Alegre JC (2004) Tree root architecture. In: Van Noordwijk M, Cadisch G, Ong CA (eds) Below-ground interactions in tropical agroecosystems. CAB International, Wallingford, pp 61–81Google Scholar
  3. Albrecht A, Cadisch G, Blanchart E, Sitompul SM, Vanlauwe B (2004) Below-ground inputs: relationships with soil quality, soil C storage and soil structure. In: Van Noordwijk M, Cadisch G, Ong CA (eds) Below-ground interactions in tropical agroecosystems. CAB International, Wallingford, pp 193–207Google Scholar
  4. Amaral JAT, DaMatta FM, Rena AB (2001) Effects of fruiting on the growth of Arabica coffee trees as related to carbohydrate and nitrogen status and to nitrate reductase activity. Revista Brasileira De Fisiologia Vegetal 13:66–74CrossRefGoogle Scholar
  5. Aranguren J, Escalante G, Herrera R (1982) Nitrogen cycle of tropical perennial crops under shade trees. 1. Coffee. Plant Soil 67:247–258CrossRefGoogle Scholar
  6. Araujo WL, Dias PC, Moraes G, Celin EF, Cunha RL, Barros RS, DaMatta FM (2008) Limitations to photosynthesis in coffee leaves from different canopy positions. Plant Physiol Biochem 46:884–890PubMedCrossRefGoogle Scholar
  7. Arruda FB, Grande MA (2003) Fator de resposta da producao do cafeeiro ao deficit hidrico em campinas. Bragantia, Campinas 62:139–145Google Scholar
  8. Avila G, Jimenez F, Beer J, Gomez M, Ibrahim M (2001) Almacenamiento, fijacion de carbono y valoracion de servicios ambientales en sistemas agroforestales en Costa Rica. Agroforesteria en las Americas 8:32–35Google Scholar
  9. Babbar LI, Zak DR (1995) Nitrogen loss from coffee agroecosystems in Costa Rica—leaching and denitrification in the presence and absence of shade trees. J Environ Qual 24:227–233CrossRefGoogle Scholar
  10. Barradas VL, Fanjul L (1986) Microclimatic chacterization of shaded and open-grown coffee (Coffea arabica L.) plantations in Mexico. Agric For Meteorol 38:101–112CrossRefGoogle Scholar
  11. Bauer H, Wierer R, Hatheway WH, Larcher W (1985) Photosynthesis of Coffea arabica after chilling. Physiol Plant 64:449–454CrossRefGoogle Scholar
  12. Beer J (1979) The UNU-CATIE “La Suiza” agro-forestry case study. In: De las Salas G (ed) Workshop agro-forestry systems in Latin America. CATIE, Turrialba, Costa Rica, pp 188–190Google Scholar
  13. Beer J (1993) Cordia alliodora and Erythrina poeppigiana spacing effects on the amount of E. poeppigiana pollarding residues in a coffee plantation. In: Westley SB, Powell MH (eds) Erythrina in the new and old worlds. Nitrogen Fixing Tree Association, Paia, USA, pp 102–120Google Scholar
  14. Beer J, Bonnemann A, Chavez W, Fassbender HW, Imbach AC, Martel I (1990) Modeling agroforestry systems of cacao (Theobroma cacao) with laurel (Cordia alliodora) or poro (Erythrina poeppigiana) in Costa Rica. 5. Productivity indexes, organic material models and sustainability over 10 years. Agrofor Syst 12:229–249CrossRefGoogle Scholar
  15. Beer J, Muschler R, Kass D, Somarriba E (1997) Shade management in coffee and cacao plantations. Agrofor Syst 38:139–164CrossRefGoogle Scholar
  16. Bellow JG, Nair PKR (2003) Comparing common methods for assessing understory light availability in shaded-perennial agroforestry systems. Agric For Meteorol 114:197–211CrossRefGoogle Scholar
  17. Berninger F, Nikinmaa E, Sievanen R, Nygren P (2000) Modelling of reserve carbohydrate dynamics, regrowth and nodulation in a N2-fixing tree managed by periodic prunings. Plant Cell Environ 23:1025–1040CrossRefGoogle Scholar
  18. Bornemisza E (1982) Nitrogen cycling in coffee plantations. Plant Soil 67:241–246CrossRefGoogle Scholar
  19. Bradshaw L, Rice KJ (1998) Competencia por agua entre el cafe y tres coberturas vivas (Arachis, Desmodium y malezas) en Nicaragua. Agronomia Costarricense 21:51–60Google Scholar
  20. Budowski G (1983) An attempt to quantify some current agroforestry practices in Costa Rica. In: Huxley PA (ed) Plant research and agroforestry. ICRAF, Nairobi, pp 43–62Google Scholar
  21. Campanha MM, Santos RHS, de Freitas GB, Martinez HEP, Garcia SLR, Finger FL (2005) Growth and yield of coffee plants in agroforestry and monoculture systems in Minas Gerais, Brazil. Agrofor Syst 63:75–82Google Scholar
  22. Carelli MLC, Fahl JI, Trivelin PCO, Queiroz-Voltan RB (1999) Carbon isotope discrimination and gas exchange in Coffea species grown under different irradiance regimes. Revista Brasileira De Fisiologia Vegetal 11:63–68Google Scholar
  23. Carpenter FL, Nichols JD, Sandi E (2004) Early growth of native and exotic trees planted on degraded tropical pasture. For Ecol Manag 196:367–378CrossRefGoogle Scholar
  24. Castro L (1995) Efecto del uso agricola y el barbecho sobre los contenidos de biomasa microbiana de Ultisoles y Andisoles de Costa Rica. Agronomia Costarricense 19:59–65Google Scholar
  25. Cervantes C, Vahrson W-G (1992) Caracteristicas fisicas y perdida de nutrimentos de las parcelas de erosion de Cerbetana de Puriscal, Costa Rica. Agronomia Costarricense 16:99–106Google Scholar
  26. Chesney P, Schlonvoigt A, Kass D, Vlek P, Murach D (2001) Repuestas de las raices finas y accumulacion de nitrogeno en el follaje de Erythrina poeppigiana despues de podas parciales o completas. Agroforesteria en las Americas 8:48–51Google Scholar
  27. Clearwater MJ, Meinzer FC (2001) Relationships between hydraulic architecture and leaf photosynthetic capacity in nitrogen-fertilized Eucalyptus grandis trees. Tree Physiol 21:683–690PubMedGoogle Scholar
  28. DaMatta FM (2004) Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field Crops Res 86:99–114CrossRefGoogle Scholar
  29. DaMatta FM, Chaves ARM, Pinheiro HA, Ducatti C, Loureiro ME (2003) Drought tolerance of two field-grown clones of Coffea canephora. Plant Sci 164:111–117CrossRefGoogle Scholar
  30. Davidson R, Gagnon D, Mauffette Y, Hernandez H (1998) Early survival, growth and foliar nutrients in native Ecuadorian trees planted on degraded volcanic soil. For Ecol Manag 105:1–19CrossRefGoogle Scholar
  31. Davidson R, Gagnon D, Mauffette Y (1999) Growth and mineral nutrition of the native trees Pollalesta discolor and the N-fixing Inga densiflora in relation to the soil properties of a degraded volcanic soil of the Ecuadorian Amazon. Plant Soil 208:135–147CrossRefGoogle Scholar
  32. Davidson R, Mauffette Y, Gagnon D (2002) Light requirements of seedlings: a method for selecting tropical trees for plantation forestry. Basic Appl Ecol 3:209–220CrossRefGoogle Scholar
  33. De Lima Filho OF, Malavolta E (2003) Studies on mineral nutrition of the coffee plant (Coffea arabica L. cv. Catuai Vermelho). LXIV. Remobilization and re-utilization of nitrogen and potassium by normal and deficient plants. Braz J Biol 63:481–490PubMedCrossRefGoogle Scholar
  34. Deans JD, Moran J, Grace J (1996) Biomass relationships for tree species in regenerating semi-deciduous tropical moist forest in Cameroon. For Ecol Manag 88:215–225CrossRefGoogle Scholar
  35. Dix ME, Bishaw B, Workman SW, Barnhart MR, Klopfenstein NB, Dix AM (1999) Pest management in energy- and labor-intensive agroforestry systems. In: Buck LE, Lassoie JP, Fernandes ECM (eds) Agroforestry in sustainable agricultural systems. CRC Press, Boca Raton, U.S.A., pp 131–155Google Scholar
  36. Dixon RK, Schroeder PE, Winjum JK (1991) Assessment of promising forest management practices and technologies for enhancing the conservation and sequestration of atmospheric carbon and their costs at the site level. USEPA Environmental Research Laboratory, Corvallis, USA, p 152Google Scholar
  37. Dulormne M, Sierra J, Sophie SA, Solvar F (2003) Capacidad de secuestro de Carbono y Nitrogeno en un sistema agroforestal de Gliricidia sepium en clima tropical subhumedo. In: Sanchez MD, Rosales Mendez M (eds) Agroforesteria para la produccion animal en America Latina—II. FAO, Rome, pp 93–98Google Scholar
  38. Duran RVR, Harmand J-M, Jimenez F, Kass D (2002) Contaminacion del agua con nitratos en microcuencas con sistemas agroforestales de Coffea arabica con Eucalyptus deglupta en la Zona Sur de Costa Rica. Agroforesteria en las Americas 9:81–85Google Scholar
  39. Dzib-Castillo BB (2003) Manejo, secuestro de carbono e ingresos de tres especies forestales de sombra en cafetales de tres regiones contrastantes de Costa Rica. CATIE, Turrialba, p 124Google Scholar
  40. FAO (1979) Eucalypts for planting. FAO, Rome, xxiv + 677 ppGoogle Scholar
  41. FAO (1995) FAOCLIM 1.2. A CD-ROM with a compilation of monthly worldwide agroclimatic data. FAO, Rome, 68 ppGoogle Scholar
  42. Forsythe W (1997) Las condiciones fisicas, la produccion agricola y la calidad del suelo. Agronomia Costarricense 21:35–47Google Scholar
  43. Fournier LA, Di Stefano JF (2004) Variaciones climaticas entre 1988 y 2001, y sus posibles efectos sobre la fenologica de varias especies lenosas y el manejo de un cafetal con sombra en Ciudad Colon de Mora, Costa Rica. Agronomia Costarricense 20:101–120Google Scholar
  44. Garay I, Kindel A, Carneiro R, Franco AA, Barros E, Abbadie L (2003) Comparison of organic matter and other soil properties in Acacia mangium and Eucalyptus grandis plantations. Revista Brasileira De Ciencia Do Solo 27:705–712Google Scholar
  45. Gazarini LC, Araujo MCC, Borralho N, Pereira JS (1990) Plant area index in Eucalyptus globulus plantations determined indirectly by a light interception method. Tree Physiol 7:107–113PubMedGoogle Scholar
  46. Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31CrossRefGoogle Scholar
  47. Glover N, Beer J (1986) Nutrient cycling in two traditional Central American agroforestry systems. Agrofor Syst 4:77–87CrossRefGoogle Scholar
  48. Gobbi JA (2000) Is biodiversity-friendly coffee financially viable? An analysis of five different coffee production systems in western El Salvador. Ecol Econ 33:267–281CrossRefGoogle Scholar
  49. Goudriaan J (1989) Simulation of micrometeorology of crops, some methods and their problems, and a few results. Agric For Meteorol 47:239–258CrossRefGoogle Scholar
  50. Grossman JM, Sheaffer C, Wyse D, Graham PH (2005) Characterization of slow-growing root nodule bacteria from Inga oerstediana in organic coffee agroecosystems in Chiapas, Mexico. Appl Soil Ecol 29:236–251CrossRefGoogle Scholar
  51. Gutierrez PS, Vaast P (2002) Comportamiento fisiologico del cafe asociado con Eucalyptus deglupta, Terminalia ivorensis o sin sombra. Agroforesteria en las Americas 9:44–49Google Scholar
  52. Harding P (1996–2005). Coffee. World fertilizer use manual. International Fertilizer Industry Association. http://www.fertilizer.org/ifa/publicat/html/pubman/coffee.htm
  53. Hartemink AE (2005) Plantation agriculture in the tropics—environmental issues. Outlook Agric 34:11–21CrossRefGoogle Scholar
  54. Herrero M, Fawcett RH, Silveira V, Busque J, Bernues A, Dent JB (2000) Modelling the growth and utilisation of kikuyu grass (Pennisetum clandestinum) under grazing. 1. Model definition and parameterisation. Agric Syst 65:73–97CrossRefGoogle Scholar
  55. Hodnett MG, Tomasella J (2002) Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: a new water-retention pedo-transfer functions developed for tropical soils. Geoderma 108:155–180CrossRefGoogle Scholar
  56. Höglind M, Schapendonk AHCM, Van Oijen M (2001) Timothy growth in Scandinavia: combining quantitative information and simulation modelling. New Phytol 151:355–367CrossRefGoogle Scholar
  57. Imbach AC (1987) Lixiviacion de Nutrimentos Principales en Cuatro Sistemas Agroforestales con Cultivos Perennes de Turrialba, Costa Rica. University of Costa Rica/CATIE, Turrialba, p 167Google Scholar
  58. Imbach AC, Fassbender HW, Beer J, Borel R, Bonnemann A (1989) Sistemas agroforestales de café (Coffea arabica) con laurel (Cordia alliodora) y café con poró (Erythrina poeppigiana) en Turrialba, Costa Rica. VI. Balances hídricos e ingreso con lluvia y lixiviación de elementos nutritivos. Turrialba 39:400–414Google Scholar
  59. Jimenez F (1986) Balance Hidrico con Enfasis en Percolacion de Dos Sistemas Agroforestales: Cafe-Poro y Cafe-Laurel, en Turrialba, Costa Rica. Universoty of Costa Rica/CATIE, Turrialba, p 104Google Scholar
  60. Kanechi M, Uchida N, Yasuda T, Yamaguchi T (1996) Non-stomatal inhibition associated with inactivation of Rubisco in dehydrated coffee leaves under unshaded and shaded conditions. Plant Cell Physiol 37:455–460Google Scholar
  61. Khanna PK (1997) Nutrient cycling under mixed-species tree systems in southeast Asia. Agrofor Syst 38:99–120CrossRefGoogle Scholar
  62. Kwesiga F (1994) Performance of fifteen provenances of Gliricidia sepium in eastern Zambia. For Ecol Manag 64:161–170CrossRefGoogle Scholar
  63. Leblanc HA, McGraw RL, Nygren P (2007) Dinitrogen-fixation by three neotropical agroforestry tree species under semi-controlled field conditions. Plant Soil 291:199–209CrossRefGoogle Scholar
  64. Lehmann J (2003) Subsoil root activity in tree-based cropping systems. Plant Soil 255:319–331CrossRefGoogle Scholar
  65. LeRoux D, Stock WD, Bond WJ, Maphanga D (1996) Dry mass allocation, water use efficiency and delta C13 in clones of Eucalyptus grandis, E. grandis × camaldulensis and E. grandis × nitens grown under two irrigation regimes. Tree Physiol 16:497–502Google Scholar
  66. Levy PE, Wendler R, Van Oijen M, Cannell MGR, Millard P (2004) The effects of nitrogen enrichment on the carbon sink in coniferous forests: uncertainty and sensitivity analyses of three ecosystem models. Water, Air and Soil Pollution: Focus 4:67–74Google Scholar
  67. Leyton L (1983) Crop water use: principles and some considerations for agroforestry. In: Huxley PA (ed) Plant Research and Agroforestry. ICRAF, Nairobi, pp 379–400Google Scholar
  68. Maestri M, Barros RS (1977) Coffee. In: Alvim PT, Kozlowski TT (eds) Ecophysiology of tropical crops. Academic Press, New York, pp 249–278Google Scholar
  69. Mafongoya PL, Giller KE, Palm CA (1997) Decomposition and nitrogen release patterns of tree prunings and litter. Agrofor Syst 38:77–97CrossRefGoogle Scholar
  70. Marin FR, Angelocci LR, Righi EZ, Sentelhas PC (2005) Evapotranspiration and irrigation requirements of a coffee plantation in southern Brazil. Exp Agric 41:187–197CrossRefGoogle Scholar
  71. Martinez HEP, Souza RB, Bayona JA, Venegas VHA, Sanz M (2003) Coffee-tree floral analysis as a mean of nutritional diagnosis. J Plant Nutr 26:1467–1482CrossRefGoogle Scholar
  72. Masera OR, Garza-Caligaris JF, Kanninen M, Karjalainen T, Liski J, Nabuurs GJ, Pussinen A, de Jong BHJ, Mohren GMJ (2003) Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V.2 approach. Ecol Modell 164:177–199CrossRefGoogle Scholar
  73. Medhurst JL, Beadle CL (2001) Crown structure and leaf area index development in thinned and unthinned Eucalyptus nitens plantations. Tree Physiol 21:989–999PubMedGoogle Scholar
  74. Medhurst JL, Beadle CL (2005) Photosynthetic capacity and foliar nitrogen distribution in Eucalyptus nitens is altered by high-intensity thinning. Tree Physiol 25:981–991PubMedGoogle Scholar
  75. Montagnini F, Nair PKR (2004) Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agrofor Syst 61:281–295CrossRefGoogle Scholar
  76. Muschler RG (1993) Biomass production, light transmission and management of Erythrina berteroana, Erythrina fusca and Gliricidia sepium used as living supports in Talamanca, Costa Rica. In: Westley SB, Powell MH (eds) Erythrina in the new and old worlds. Nitrogen Fixing Tree Association, Paia, USA, pp 192–199Google Scholar
  77. Nair PKR (1990) The prospects for agroforestry in the tropics. World Bank Technical Paper. The World Bank, Washington D.C., p xi + 77Google Scholar
  78. Nair PKR, Buresh RJ, Mugendi DN, Latt CR (1999) Nutrient cycling in tropical agroforestry systems: myths and science. In: Buck LE, Lassoie JP, Fernandes ECM (eds) Agroforestry in sustainable agricultural systems. CRC Press, Boca Raton, U.S.A., pp 1–31Google Scholar
  79. Ngulube MR (1994) Evaluation of Gliricidia sepium provenances for alley cropping in Malawi. For Ecol Manag 64:191–198CrossRefGoogle Scholar
  80. Norgrove L, Hauser S (2000) Leaf properties, litter fall, and nutrient inputs of Terminalia ivorensis at different tree stand densities in a tropical timber—food crop multistrata system. Can J For Res 30:1400–1409CrossRefGoogle Scholar
  81. Norgrove L, Hauser S (2002) Measured growth and tree biomass estimates of Terminalia ivorensis in the 3 years after thinning to different stand densities in an agrisilvicultural system in southern Cameroon. For Ecol Manag 166:261–270CrossRefGoogle Scholar
  82. Nunes MA, Bierhuizen JF, Ploegman C (1968) Studies on productivity of coffee. I. Effect of light, temperature and CO2 concentration on photosynthesis of Coffea arabica. Acta Botanica Neerlandica 1:93–102Google Scholar
  83. Nygren P (1995) Leaf CO2 exchange of Erythrina poeppigiana (Leguminosae: Phaseolae) in humid tropical field conditions. Tree Physiol 15:71–83PubMedGoogle Scholar
  84. Nygren P (1996) Erythrina poeppigiana: shade tree gains new perspectives. FACT Net [http://www.winrock.org/forestry/factpub/factsh/erypoepp.htm]
  85. Nygren P, Campos A (1995) Effect of foliage pruning on fine root biomass of Erythrina poeppigiana (Fabaceae). In: Sinoquet H, Cruz P (eds) Ecophysiology of tropical intercropping. INRA, Paris, pp 295–302Google Scholar
  86. Nygren P, Kiema P, Rebottaro S (1996) Canopy development, CO2 exchange and carbon balance of a modeled agroforestry tree. Tree Physiol 16:733–745PubMedGoogle Scholar
  87. Nygren P, Cruz P, Domenach AM, Vaillant V, Sierra J (2000) Influence of forage harvesting regimes on dynamics of biological dinitrogen fixation of a tropical woody legume. Tree Physiol 20:41–48PubMedGoogle Scholar
  88. Oelbermann M, Voroney RP, Kass DCL, Schlonvoigt AM (2005) Above- and below-ground carbon inputs in 19-, 10- and 4-year-old Costa Rican alley cropping systems. Agric Ecosyst Environ 105:163–172CrossRefGoogle Scholar
  89. Oelbermann M, Voroney RP, Kass DCL, Schlonvoigt AM (2006) Soil carbon and nitrogen dynamics using stable isotopes in 19- and 10-year-old tropical agroforestry systems. Geoderma 130:356–367CrossRefGoogle Scholar
  90. Palm CA, Gachengo CN, Delve RJ, Cadisch G, Giller KE (2001) Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database. Agric Ecosyst Environ 83:27–42CrossRefGoogle Scholar
  91. Payan F, Beer J, Jones D, Harmand JM, Muschler R (2002) Concentrationes de carbono y nitrogeno en el suelo bajo Erythrina poeppigiana en plantaciones organicas y convencionales de cafe. Agroforesteria en las Americas 9:10–15Google Scholar
  92. Peasley D, Rolfe C (2003) Developing irrigation strategies for coffee under sub-tropical conditions. RIRDC, Barton, Australia, p xi + 52Google Scholar
  93. Pereira JS, Chaves MM, Fonseca F, Araujo MC, Torres F (1992) Photosynthetic capacity of leaves of Eucalyptus globulus (Labill) growing in the field with different nutrient and water-supplies. Tree Physiol 11:381–389PubMedGoogle Scholar
  94. Pinkard EA, Battaglia M, Beadle CL, Sands PJ (1999) Modeling the effect of physiological responses to green pruning on net biomass production of Eucalyptus nitens. Tree Physiol 19:1–12PubMedGoogle Scholar
  95. Ramalho JC, Pons TL, Groeneveld HW, Nunes MA (1997) Photosynthetic responses of Coffea arabica leaves to a short-term high light exposure in relation to N availability. Physiol Plant 101:229–239CrossRefGoogle Scholar
  96. Ramirez C (1993) Agroforestry: a mechanistic approach. In: Buxton DR, Shibles R, Forsberg RA, Blad BL, Asay KH, Paulsen GM, Wilson RF (eds) International crop science I. Crop Science Society of America, Madison, USA, pp 43–48Google Scholar
  97. Ramirez F, Bertsch F, Mora L (2002) Consumo de nutrimentos por los frutos y bandolas de cafe Caturra durante un ciclo de desarollo y maduracion en Aquiares, Turrialba, Costa Rica. Agronomia Costarricense 26:33–42Google Scholar
  98. Reynolds-Vargas JS, Richter DD (1995) Nitrate in groundwaters of the Central Valley, Costa Rica. Environ Int 21:71–79CrossRefGoogle Scholar
  99. Reynolds-Vargas JS, Richter DD, Bornemisza E (1994) Environmental impacts of nitrification and nitrate adsorption in fertilized Andisols in the Valle Central of Costa Rica. Soil Sci 157:289–299CrossRefGoogle Scholar
  100. Rodrigues LA, Martinez HEP, Neves JCL, Novais RF, Mendonca SM (2001) Growth response of coffee tree shoots and roots to subsurface liming. Plant Soil 234:207–214CrossRefGoogle Scholar
  101. Romero-Alvarado Y, Soto-Pinto L, Garcia-Barrios L, Barrera-Gaytan JF (2002) Coffee yields and soil nutrients under the shades of Inga sp. vs. multiple species in Chiapas, Mexico. Agrofor Syst 54:215–224CrossRefGoogle Scholar
  102. Rosero P, Gewald N (1979) Growth of laurel (Cordia alliodora) in coffee and cacao plantations and pastures in the Atlantic region of Costa Rica. In: De las Salas G (ed) Workshop agro-forestry systems in Latin America. CATIE, Turrialba, Costa Rica, pp 205–208Google Scholar
  103. Roskoski JP (1982) Nitrogen-fixation in a Mexican coffee plantation. Plant Soil 67:283–291CrossRefGoogle Scholar
  104. Roskoski JP, Bornemisza E, Aranguren J, Escalante G, Santana MBM (1982) Report of the work group on coffee and cacao plantations. Plant Soil 67:403–407CrossRefGoogle Scholar
  105. Russo RO (1993) The use of Erythrina species in the Americas. In: Westley SB, Powell MH (eds) Erythrina in the new and old worlds. Nitrogen Fixing Tree Association, Paia, USA, pp 28–45Google Scholar
  106. Russo RO, Budowski G (1986) Effect of pollarding frequency on biomass of Erythrina poeppigiana as a coffee shade tree. Agrofor Syst 4:145–162CrossRefGoogle Scholar
  107. Ryan MC, Graham GR, Rudolph DL (2001) Contrasting nitrate adsorption in Andisols of two coffee plantations in Costa Rica. J Environ Qual 30:1848–1852PubMedCrossRefGoogle Scholar
  108. Sanchez JF, Moreno RA, Muñoz F (1993) Erythrina fusca: un arbol leguminosa de la costa norte de Colombia con potencial agroforestal. In: Westley SB, Powell MH (eds) Erythrina in the new and old worlds. Nitrogen Fixing Tree Association, Paia, USA, pp 55–61Google Scholar
  109. Sanginga N, Vanlauwe B, Danso SKA (1995) Management of biological N2 fixation in alley cropping systems—estimation and contribution to N balance. Plant Soil 174:119–141CrossRefGoogle Scholar
  110. Santana RC, De Barros NF, Neves JCL (2002) Eficiencia de utilizacao de nutrientes e sustentabilidade da producao em procedencias de Eucalyptus grandis e Eucalyptus saligna em sitios florestais do estado de Sao Paulo. Revista Arvore 26:447–457Google Scholar
  111. Schaller M, Schroth G, Beer J, Jimenez F (2003) Species and site characteristics that permit the association of fast-growing trees with crops: the case of Eucalyptus deglupta as coffee shade in Costa Rica. For Ecol Manag 175:205–215CrossRefGoogle Scholar
  112. Shelton HM (1994) Environmental adaptation of forage tree legumes. In: Gutteridge RC, Shelton HM (eds) Forage tree legumes in tropical agriculture. CAB International, Wallingford, UK, pp 111–119Google Scholar
  113. Silva EA, DaMatta FM, Ducatti C, Regazzi AJ, Barros RS (2004) Seasonal changes in vegetative growth and photosynthesis of Arabica coffee trees. Field Crops Res 89:349–357CrossRefGoogle Scholar
  114. Simons AJ, Stewart JL (1994) Gliricidia sepium—a multipurpose forage tree legume. In: Gutteridge RC, Shelton HM (eds) Forage tree legumes in tropical agriculture. CAB International, Wallingford, UK, pp 30–48Google Scholar
  115. Starr GC, Lal R, Malone R, Hothem D, Owens L, Kimble J (2000) Modeling soil carbon transported by water erosion processes. Land Degrad Dev 11:83–91CrossRefGoogle Scholar
  116. Staver C (1999) Managing ground cover heterogeneity in coffee (Coffea arabica L.) under managed tree shade: from replicated plots to farmer practice. In: Buck LE, Lassoie JP, Fernandes ECM (eds) Agroforestry in sustainable agricultural systems. CRC Press, Boca Raton, USA, pp 67–96Google Scholar
  117. Staver C, Guharay F, Monterroso D, Muschler RG (2001) Designing pest-suppressive multistrata perennial crop systems: shade-grown coffee in Central America. Agrofor Syst 53:151–170CrossRefGoogle Scholar
  118. Vaast P, Angrand J, Franck N, Dauzat J, Genard M (2005) Fruit load and branch ring-barking affect carbon allocation and photosynthesis of leaf and fruit of Coffea arabica in the field. Tree Physiol 25:753–760PubMedGoogle Scholar
  119. Vahrson W-G, Palacios G (1993) Datos complementarios de erosion, escorrentia y perdida de nutrimentos en Cerbetana de Puriscal: Resultados 1991. Agronomia Costarricense 17:95–98Google Scholar
  120. van Gardingen PR, Jackson GE, Hernandez-Daumas S, Russell G, Sharp L (1999) Leaf area index estimates obtained for clumped canopies using hemispherical photography. Agric For Meteorol 94:243–257CrossRefGoogle Scholar
  121. Van Kanten R (2003). Competitive interactions in agroforestry systems: competitive interactions between Coffea arabica L. and fast-growing timber shade trees in Southern Costa Rica. GTZ, Eschborn, Germany, p xii + 66Google Scholar
  122. Van Noordwijk M, Van de Geijn SC (1996) Root, shoot and soil parameters required for process-oriented models of crop growth limited by water or nutrients. Plant Soil 183:1–25CrossRefGoogle Scholar
  123. Van Noordwijk M, Rahayu S, Williams SE, Hairiah K, Khasanah N, Schroth G (2004) Tree root architecture. In: Van Noordwijk M, Cadisch G, Ong CA (eds) Below-ground interactions in tropical agroecosystems. CAB International, Wallingford, pp 83–107Google Scholar
  124. Van Oijen M, Rougier J, Smith R (2005) Bayesian calibration of process-based forest models: bridging the gap between models and data. Tree Physiol 25:915–927PubMedGoogle Scholar
  125. Van Oijen M, Dauzat J, Harmand J-M, Lawson G, Vaast P (2010) Coffee agroforestry systems in Central America: II. Development of a simple process-based model and preliminary results. Agrofor Syst. doi:10.1007/s10457-010-9291-1
  126. World-Agroforestry-Centre (2004) Wood density database. Bogor, Indonesia. http://www.worldagroforestry.org/sea/Products/AFDbases/WD/Index.htm
  127. Young A (1997) Agroforestry for soil management, 2nd ed. CAB International, Wallingford, vii + 320 ppGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Marcel van Oijen
    • 1
  • Jean Dauzat
    • 2
  • Jean-Michel Harmand
    • 2
  • Gerry Lawson
    • 3
  • Philippe Vaast
    • 4
  1. 1.Centre for Ecology and Hydrology (CEH-Edinburgh)PenicuikUK
  2. 2.CIRADMontpellierFrance
  3. 3.NERCSwindonUK
  4. 4.CATIETurrialbaCosta Rica

Personalised recommendations