Advertisement

Agroforestry Systems

, Volume 78, Issue 3, pp 269–286 | Cite as

Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica

  • Pablo Siles
  • Jean-Michel Harmand
  • Philippe VaastEmail author
Article

Abstract

The advantages of associating shade trees in coffee agroforestry systems (AFS) are generally thought to be restricted mostly to poor soil and sub-optimal ecological conditions for coffee cultivation whereas their role in optimal conditions remains controversial. Thus, the objective of this study was to investigate, under the optimal coffee cultivation conditions of the Central Valley of Costa Rica, the impact of Inga densiflora, a very common shade tree in Central America, on the microclimate, yield and vegetative development of shaded coffee in comparison to coffee monoculture (MC). Maximum temperature of shaded coffee leaves was reduced by up to 5°C relative to coffee leaf temperature in MC. The minimum air temperature at night was 0.5°C higher in AFS than air temperature in MC demonstrating the buffering effects of shade trees. As judged by the lower relative extractable water (REW) in the deep soil layers during the dry season, water use in AFS was higher than in MC. Nevertheless, competition for water between coffee and associated trees was assumed to be limited as REW in the 0–150 cm soil layer was always higher than 0.3 in shaded coffee compared to 0.4 in monoculture. Coffee production was quite similar in both systems during the establishment of shade trees, however a yield decrease of 30% was observed in AFS compared to MC with a decrease in radiation transmittance to less than 40% during the latter years in the absence of an adequate shade tree pruning. As a result of the high contribution (60%) of shade trees to overall biomass, permanent aerial biomass accumulation in AFS amounted to two times the biomass accumulated in MC after 7 years. Thus provided an adequate pruning, Inga-shaded plantations appeared more advantageous than MC in optimal conditions, especially considering the fact that coffee AFS provides high quality coffee, farmers’ revenue diversification and environmental benefits.

Keywords

Agroforestry Biomass Coffee yield Fuelwood Leaf temperature Light interception Shade 

Notes

Acknowledgments

The authors would like to thank the Coffee Institute of Costa Rica for facilitating the use and maintenance of the experimental plot on the research station of San Pedro de Barva and the European Commission (ICA-4-CT-2001-10071) for their financial support of the scientific equipment and field measurements performed within the framework of the CASCA project (Coffee Agroforestry in Central America).

References

  1. Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ 99:15–27CrossRefGoogle Scholar
  2. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evaporation: guidelines for computing crop water requirements. FAO Irrigation and drainage paper No. 56. FAO, Rome, p 300Google Scholar
  3. Avelino J, Zelaya H, Merlo A, Pineda A, Ordoñez M, Savary S (2006) The intensity of a coffee rust epidemic is dependent on production situations. Ecol Model 197:431–447CrossRefGoogle Scholar
  4. Avelino J, Cabut S, Barboza B, Barquero M, Alfaro R, Esquivel C, Durand JF, Cilas C (2007) Topography and crop management are key factors for the development of American leaf spot epidemics on coffee in Costa Rica. Phytopathology 97:1532–1542CrossRefPubMedGoogle Scholar
  5. Barradas VL, Fanjul L (1986) Microclimatic characterization of shaded and open-grown coffee (Coffea arabica) plantations in Mexico. Agric For Meteorol 38:101–112CrossRefGoogle Scholar
  6. Beer J (1987) Advantages, disadvantages and desirable characteristics of shade trees for coffee, cocoa and tea. Agrofor Syst 5:3–13CrossRefGoogle Scholar
  7. Beer J, Muschler RG, Kass D, Somarriba E (1998) Shade management in coffee and cacao plantations. Agrofor Syst 38:139–164CrossRefGoogle Scholar
  8. Cannel MGR (1985) Physiology of the coffee crop. In: Cliford NM, Wilson KC (eds) Coffee: botany, biochemistry and production of beans and beverage. Croom Helm, London, pp 108–134Google Scholar
  9. Cannell MRG (1975) Crop physiological aspects of coffee bean yield: a review. J Coffee Res 5:7–20Google Scholar
  10. Da Matta FM (2004) Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field Crops Res 86:92–114Google Scholar
  11. Da Matta FM, Maestri M (1997) Photoinhibition and recovery of photosynthesis in Coffea arabica and C. canephora. Photosynthetica 34(3):439–446CrossRefGoogle Scholar
  12. Dauzat J, Rapidel B, Berger A (2001) Simulation of leaf transpiration and sap flow in virtual plants: model description and application to a coffee plantation in Costa Rica. Agric For Meteorol 109:143–160CrossRefGoogle Scholar
  13. De Miguel SM, Harmand JM, Hergoualc’h K (2004) Cuantificacion del carbono almacenado en la biomasa aerea y el mantillo en sistemas agroforestales de cafe en el suroeste de Costa Rica. Agroforesteria en las Americas 41–42:98–104Google Scholar
  14. Dzib B, Vaast P, Harmand JM, Llandera T (2006) Manejo, almacenamiento de carbono e ingresos económicos obtenidos de árboles maderables en fincas cafetaleras de tres regiones contrastantes de Costa Rica. Agroforesteria en las Americas 10(41–42):44–53Google Scholar
  15. Fanjul L, Arreola RR, Mendez MPC (1985) Stomatal responses to environmental variables in shade and sun grown coffee plants in Mexico. Exp Agric 21(2):249–258CrossRefGoogle Scholar
  16. Feldhake CM (2001) Microclimate of a natural pasture under planted Robinia psueudoacacia in Central Appalachia, West Virginia. Agrofor Syst 53:297–303CrossRefGoogle Scholar
  17. Fernández CF, Muschler RG (1999) Aspectos de la sostenibilidad de los sistemas de cultivo de café en América Central. In: Bertrand B, Rapidel B (eds) Desafíos de la Caficultura Centroamericana. Editorial Agroamérica, San José, pp 69–96Google Scholar
  18. Franck N (2005) Effet de la charge en fruits et de l’ombrage sur l’assimilation carbonée, la croissance et la production du caféier (Coffea arabica L.). Thèse de Doctorat, ENSA, Montpellier, pp 175Google Scholar
  19. Franck N, Vaast P, Génard M, Dauzat J (2006) Soluble sugars mediate sink feedback down–regulation of leaf photosynthesis of Coffea arabica in the field. Tree Physiol 26:517–525PubMedGoogle Scholar
  20. Govindarajan M, Rao MR, Mathuva MN, Nair PKR (1996) Soil-water and root dynamic under hedgerow intercropping in semiarid Kenya. Agron J 88:513–520CrossRefGoogle Scholar
  21. Gutiérrez MV, Meinzer FC, Grantz DA (1994) Regulation of transpiration in coffee hedgerows: co-variation of environmental variables and apparent responses of stomata to wind and humidity. Plant Cell Environ 17:1305–1313CrossRefGoogle Scholar
  22. Guyot B, Manez JC, Perriot JJ, Giron J, Villain L (1996) Influence de l’altitude et de l’ombrage sur la qualité des cafés arabica. Plantation Recherche Development 3:272–280Google Scholar
  23. Harmand JM, Avila H, Dambrine E, Skiba U, De Miguel S, Renderos Duran RV, Oliver R, Jimenez F, Beer J (2007a) Nitrogen dynamics and soil nitrate retention in a Coffea arabica - Eucalyptus deglupta agroforestry system in Southern Costa Rica. Biogeochemistry 85(2):125–139CrossRefGoogle Scholar
  24. Harmand JM, Chaves V, Avila H, Cannavo P, Dionisio L, Crouzet G, Zeller B, Vaast P, Oliver R, Dambrine E (2007b) Nitrogen dynamics and nitrate leaching in Coffea arabica systems in Costa Rica according to site conditions, fertilization and shade management. Proceedings of the 21st International Congress on Coffee Research, Montpellier. ASIC, Paris, pp 1071–1074Google Scholar
  25. Henríquez C, Cabalceta G (1999) Guía práctica para el estudio introductorio de los suelos con un enfoque agrícola. ACCS (Asociación Costarricense de la Ciencia del Suelo), San JoséGoogle Scholar
  26. Howard S, Ong C, Black C, Khan A (1996) Using sap flow gauges to quantify water uptake by tree roots from beneath the crop rooting zone in agroforestry systems. Agrofor Syst 35:15–29CrossRefGoogle Scholar
  27. ICAFE (Instituto del Café de Costa Rica) (1998) Manual para recomendaciones para el cultivo del café. ICAFE-CICAFE, Heredia, p 193Google Scholar
  28. ICO (International Coffee Organization) (2008) http://www.ico.org/
  29. Kumar D, Tieszen LL (1980) Photosynthesis in Coffea arabica. I Effects of light and temperature. Exp Agric 16:13–19CrossRefGoogle Scholar
  30. Martius C, Höfer H, Garcia MVB, Römbke J, Förster B, Hanagarth W (2004) Microclimate in agroforestry in Central Amazonia: does canopy closure matter to soil organisms? Agrofor Syst 60:291–304CrossRefGoogle Scholar
  31. Mata RA, Ramirez JE (1999) Estudio de caracterización de suelos y su relación con el manejo del cultivo de café en la provincia de Heredia. ICAFE, San Jose, p 92Google Scholar
  32. Matoso Campanha M, Silva Santos RH, de Freitas GB, Prieto Martinez HE, Ribeiro Garcia SL, Finger FL (2004) Growth and yield of coffee plants in agroforestry and monoculture systems in Minas Gerais, Brazil. Agrofor Syst 63:75–83Google Scholar
  33. McIntyre BD, Riha SJ, Ong CK (1997) Competition for water in a hedge-intercrop system. Field Crops Res 52:151–160CrossRefGoogle Scholar
  34. Murphy RJ, Yau PY (1998) Calorific value, basic density and ash content of Inga species. In: Pennington TD, Fernández ECM (eds) The genus Inga: utilization. Royal Botanic Gardens, Kew, pp 29–39Google Scholar
  35. Muschler RG (1997) Tree-crop compatibility in Agroforestry: production and quality of coffee grown under managed tree shade in Costa Rica. PhD Thesis, University of Florida, Gainesville, pp 219Google Scholar
  36. Muschler RG (1999) Árboles en cafetales. Proyecto agroforestal CATIE/GTZ. Modulo de enseñanza No. 5. CATIE/GTZ, Turrialba, p 60Google Scholar
  37. Muschler RG, Bonnemann A (1997) Potentials and limitations of agroforestry for changing land-use in the tropics: experiences from Central America. For Ecol Manag 91:61–73CrossRefGoogle Scholar
  38. Ong CK, Black CR, Wallace JS, Khan AAH, Lott JE, Jackson NA, Howard SB, Smith DM (2000) Productivity, microclimate and water use in Grevillea robusta-based agroforestry systems on hill slopes in semi-arid Kenya. Agric Ecosyst Environ 80:121–141CrossRefGoogle Scholar
  39. Pearson T, Walker S, Brown S (2005) Sourcebook for land use, land-use change and forestry projects. Biocarbon Fund and Winrock International. Available at: http://www.winrock.org/ecosystems/files/Winrock-BioCarbon_Fund_Sourcebook-compressed.pdf
  40. Pennington TD (1998) Growth and biomass of Inga species. In: Pennington TD, Fernández ECM (eds) The genus Inga: utilization. Royal Botanic Gardens, Kew, pp 15–28Google Scholar
  41. Perfecto I, Rice R, Greenberg R, van der Voort ME (1996) Shade coffee: a disappearing refuge for biodiversity. Bioscience 46(8):598–608CrossRefGoogle Scholar
  42. Rao MR, Nair PKR, Ong CK (1998) Biophysical interactions in tropical agroforestry systems. Agrofor Syst 38:3–50CrossRefGoogle Scholar
  43. Schaller M, Schroth G, Beer J, Jimenez F (2003) Species and site characteristics that permit the association of fast-growing trees with crops; the case of Eucalyptus deglupta as coffee shade in Costa Rica. For Ecol Manag 175:205–215CrossRefGoogle Scholar
  44. Siles P (2007) Hydrological processes (water use and balance) in a coffee (Coffea arabica L.) monoculture and a coffee plantation shaded by Inga densiflora in Costa Rica. PhD Thesis Dissertation. Université Henri Poincaré, Nancy, p 160Google Scholar
  45. Soto-Pinto L, Perfecto I, Castillo-Hernandez J, Caballero-Nieto J (2000) Shade effect on coffee production at the northern Tzeltal zone of the state of Chiapas, Mexico. Agric Ecosyst Environ 80:61–69CrossRefGoogle Scholar
  46. Staver C, Guharay F, Monterroso D, Muschler RG (2001) Designing pest-suppressive multistrata perennial crops systems: shade-grown coffee in Central America. Agrofor Syst 53:151–170CrossRefGoogle Scholar
  47. Suarez D, Segura M, Kanninen M (2004) Estimacion de la biomasa aerea total en arboles de sombra y plantas de café en sistemas agroforestales en Matagalpa, Nicaragua, usando modelos alometricos. Agroforesteria en las Americas 41–42:112–119Google Scholar
  48. Sumner ME, Miller WP (1996) Cation exchange capacity and exchange coefficients. In: Sparks DL (ed) Methods of soil analysis. Part 3: chemical methods, 3rd edn. SSSA and ASA, Madison, pp 1220–1221Google Scholar
  49. Tavares FC, Beer J, Jimenez F, Schroth G, Fonseca C (1999) Experiencia de agricultores de Costa Rica con la introducción de árboles maderables en plantaciones de café. Agroforesteria de las Américas 6(23):17–20Google Scholar
  50. Ting KC, Giacomelli GA (1987) Availability of Solar Photosynthetically Active Radiation. Transactions of the ASAE 30(5):1453–1457Google Scholar
  51. Vaast P, van Kanten R, Siles P, Dzib B, Franck N, Harmand JM, Génard M (2005a) Shade: a key factor for coffee sustainability and quality. Proceedings of the 20th International Congress on Coffee Research, Bangalore, India. ASIC, Paris, France, pp 887–896Google Scholar
  52. Vaast P, Beer J, Harvey C, Harmand JM (2005b) Environmental services of coffee agroforestry systems in Central America: a promising potential to improve the livelihoods of coffee farmers’ communities. In: CATIE (ed) Intregrated management of environmental services in human—dominated tropical landscapes: IV Henri A. Wallace Inter-American Scientific Conference Series, Turrialba, pp 35–39Google Scholar
  53. Vaast P, Angrand J, Franck N, Dauzat J, Génard M (2005c) Fruit load and branch ring-barking affect carbon allocation and photosynthesis of leaf and fruit of Coffea arabica in field conditions. Tree Physiol 25:753–760PubMedGoogle Scholar
  54. Vaast P, Bertrand B, Guyot B, Génard M (2006) Fruit thinning and shade influence bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J. Sc. Food Agric 86:197–204CrossRefGoogle Scholar
  55. Vaast P, van Kanten R, Siles P, Angrand J, Aguilar A (2007a) Chapter 9. Biophysical interactions between timber trees and Arabica coffee in suboptimal conditions of Central America. In: José S, Gordon AM (eds) Towards agroforesty design: an ecological approach. Springer, Berlin, pp 135–148Google Scholar
  56. Vaast P, Salazar M, Martinez M, Boulay A, Harmand JM, Navarro G (2007b) Importance of tree revenues and incentives of the programme “Coffee-Practices” of Starbucks for coffee farmers in Costa Rica and Guatemala. Proceedings of the 21st International Congress on Coffee Research, ASIC, Montpellier, pp. 495–502Google Scholar
  57. van Kanten RF, Vaast P (2006) Coffee and shade tree transpiration in suboptimal, low-altitude conditions of Costa Rica. Agrofor Syst 67:187–202CrossRefGoogle Scholar
  58. Verchot L, Mackensen J, Kandji S, van Noordwijk M, Tomich T, Ong C, Albrecht A, Bantilan C, Anupama K, Palm C (2005) Opportunities for linking adaptation and mitigation in agroforestry systems. In: Robledo C, Kanninen M, Pedroni L (eds) Tropical forests and adaptation to climate change- in search of synergies. Center for International Forestry Research (CIFOR), Bogor, p 186Google Scholar
  59. Viera JC, Köpesell E, Beer J, Lok R, Calvo G (1999) Incentivos financieros para establecer y manejar árboles maderables en cafetales. Agroforestería en las Américas 6(23):21–23Google Scholar
  60. Willey RW (1975) The use of shade in coffee, cocoa and tea. Hor Abstr 45(12):791–798Google Scholar
  61. Willson KC (1985) Mineral nutrition and fertilizer needs. In: Clifford NM, Willson KC (eds) Coffee: botany, biochemistry and production of beans and beverage. Croom Helm, London, pp 108–134Google Scholar
  62. Zamora N, Pennington T (2001) Guabas y guajiniquiles de Costa Rica (Inga spp.). Instituto Nacional de Biodiversidad, Heredia, p 197Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Pablo Siles
    • 1
    • 4
  • Jean-Michel Harmand
    • 2
  • Philippe Vaast
    • 3
    Email author
  1. 1.CATIE (Centro Agronómico Tropical de Investigación y Enseñensa)TurrialbaCosta Rica
  2. 2.CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), UPR 80 Fonctionnement et Pilotage des Ecosystèmes de Plantations S/C UMR Eco&Sols (Sup Agro)Montpellier Cedex 01France
  3. 3.CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), UPR 80 Fonctionnement et Pilotage des Ecosystèmes de PlantationsMontpellier Cedex 5France
  4. 4.UCATSE (Universidad Católica del Trópico Seco)EsteliNicaragua

Personalised recommendations