Agroforestry Systems

, Volume 76, Issue 1, pp 67–80 | Cite as

Crop residue effect on crop performance, soil N2O and CO2 emissions in alley cropping systems in subtropical China

  • Z. L. Guo
  • C. F. CaiEmail author
  • Z. X. Li
  • T. W. Wang
  • M. J. Zheng


Land management practices that simultaneously improve soil properties are crucial to high crop production and minimize detrimental impact on the environment. We examined the effects of crop residues on crop performance, the fluxes of soil N2O and CO2 under wheat-maize (WM) and/or faba bean-maize (FM) rotations in Amorpha fruticosa (A) and Vetiveria zizanioides (V) intercropping systems on a loamy clay soil, in subtropical China. Crop performance, soil N2O and CO2 as well as some potential factors such as soil water content, soil carbon, soil nitrogen, microbial biomass and N mineralization were recorded during 2006 maize crop cultivation. Soil N2O and CO2 fluxes are determined using a closed-based chamber. Maize yield was greater after faba bean than after wheat may be due to differences in supply of N from residues. The presence of hedgerow significantly improved maize grain yields. N2O emissions from soils with maize were considerably greater after faba bean (345 g N2O–N ha−1) than after wheat (289 g N2O–N ha−1). However, the cumulated N2O emissions did not differ significantly between WM and FM. The difference in N2O emissions between WM and FM was mostly due to the amounts of crop residues. Hedgerow alley cropping tended to emit more N2O than WM and FM, in particular A. fruticosa intercropping systems. Over the entire 118 days of measurement, the N2O fluxes represented 534 g N2O–N ha−1 (AWM) and 512 g N2O–N ha−1 (AFM) under A. fruticosa species, 403 g N2O–N ha−1 (VWM) and 423 g N2O–N ha−1 (VFM) under Vetiver grass. We observed significantly higher CO2 emission in AFM (5,335 kg CO2–C ha−1) from June to October, whereas no significant difference was observed among WM (3,480 kg CO2–C ha−1), FM (3,302 kg CO2–C ha−1), AWM (3,877 kg CO2–C ha−1), VWM (3,124 kg CO2–C ha−1) and VFM (3,309 kg CO2–C ha−1), indicating the importance of A. fruticosa along with faba bean residue on CO2 fluxes. As a result, crop residues and land conversion from agricultural to agroforestry can, in turn, influence microbial biomass, N mineralization, soil C and N content, which can further alter the magnitude of crop growth, soil N2O and CO2 emissions in the present environmental conditions.


N2O emission CO2 emission Crop residue Hedge Microbial biomass N mineralization WFPS 



This study was financial support from the Major State Basic Research Development Program of the People’s Republic of China (Project Number 2007CB407201) and the National Natural Science Foundation of China (Project Number 40671114). We are also grateful to Dr. Luuk Koopal from Wageningen University for his revision, and the anonymous reviewer and editor for their helpful comments and suggestions that improved the manuscript greatly.


  1. Ambus P (2005) Relationship between gross nitrogen cycling and nitrous oxide emission in grass-clover pasture. Nutr Cycl Agroecosyst 72:189–199. doi: 10.1007/s10705-005-1269-4 CrossRefGoogle Scholar
  2. Anderson JP, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soil. Soil Biol Biochem 10:215–221. doi: 10.1016/0038-0717(78)90099-8 CrossRefGoogle Scholar
  3. Anderson TH, Domsch KH (1990) Application of eco-physicological quotients (qCO2 and qD) on microbial biomass from soils of different cropping histories. Soil Biol Biochem 22:251–255. doi: 10.1016/0038-0717(90)90094-G CrossRefGoogle Scholar
  4. Aulakh MS, Rennie DA, Paul EA (1984) Gaseous nitrogen losses from soils under zero-till as compared with conventional-till management systems. J Environ Qual 13:130–136Google Scholar
  5. Aulakh MS, Khera S, Doran JW, Bronson KF (2001) Denitrification, N2O and CO2 fluxes in rice-wheat cropping systems affected by crop residues, fertilizer N and legume green manure. Biol Fertil Soils 34:375–389. doi: 10.1007/s003740100420 CrossRefGoogle Scholar
  6. Babalola O, Oshensanya SO, Are K (2007) Effects of Vetiver grass (Vetiveria nigritana) strips, vetiver grass mulch and an organomineral fertilizer on soil, water and nutrient losses and maize (Zea mays, L) Yields. Soil Tillage Res 96:6–18. doi: 10.1016/j.still.2007.02.008 CrossRefGoogle Scholar
  7. Baggs EM, Rees RM, Smith KA, Vinten AJA (2000) Nitrous oxide emission from soils after incorporating crop residues. Soil Use Manage 16:82–87Google Scholar
  8. Baggs EM, Stevenson M, Pihlatie M, Regar A, Cook H, Cadisch G (2003) Nitrous oxide emissions following application of residues and fertilizer under zero and conventional tillage. Plant Soil 254:361–370. doi: 10.1023/A:1025593121839 CrossRefGoogle Scholar
  9. Baggs EM, Chebii JK, Ndufa JK (2006) A short-term investigation of trace gas emissions following tillage and no-tillage of agroforestry residues in western Kenya. Soil Tillage Res 90:69–76. doi: 10.1016/j.still.2005.08.006 CrossRefGoogle Scholar
  10. Ball BC, Parker JP, Scott A (1999a) Soil and residue management effects on cropping conditions and nitrous oxide fluxes under controlled traffic in Scotland 2. Nitrous oxide, soil N status and weather. Soil Tillage Res 52:191–201. doi: 10.1016/S0167-1987(99)00081-1 CrossRefGoogle Scholar
  11. Ball BC, Scott A, Parker JP (1999b) Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil Tillage Res 53:29–39. doi: 10.1016/S0167-1987(99)00074-4 CrossRefGoogle Scholar
  12. Bremmer JM (1997) Sources of nitrous oxide in soils. Nutr Cycl Agroecosyst 49:7–16. doi: 10.1023/A:1009798022569 CrossRefGoogle Scholar
  13. Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. doi: 10.1016/0038-0717(85)90144-0 CrossRefGoogle Scholar
  14. Chaves B, De Neve S, Hofman G, Boeckx P, Van Cleemput O (2004) Nitrogen mineralization of vegetable root residues and green manures as related to their (bio)chemical composition. Eur J Agron 21:161–170. doi: 10.1016/j.eja.2003.07.001 CrossRefGoogle Scholar
  15. Cortez J, Billes G, Bouché MB (2000) Effect of climate, soil type and earthworm activity on nitrogen transfer from a nitrogen-15-labelled decomposing material under field conditions. Biol Fertil Soils 30:318–327. doi: 10.1007/s003740050010 CrossRefGoogle Scholar
  16. Davidson EA, Verchot LV (2000) Testing the hole-in-the-pipe model of nitric and nitrous oxide emissions from soils using the TRAGNET database. Global Biogeochem Cycles 14:1035–1043. doi: 10.1029/1999GB001223 CrossRefGoogle Scholar
  17. Davidson EA, Verchot LV, Cattânio JH, Ackerman IL, Carvalho JE (2000) Effects of soil water content on soil respiration in forests and cattle pasture of eastern Amazonia. Biogechemistry 46:53–69. doi: 10.1023/A:1006204113917 CrossRefGoogle Scholar
  18. Ding WX, Cai Y, Cai ZC, Yagi K, Zheng XH (2007) Nitrous oxide emissions from an intensively cultivated maize-wheat rotation soil in the North China Plain. Sci Total Environ 373:201–251. doi: 10.1016/j.scitotenv.2006.12.026 Google Scholar
  19. Du LJ, Jin T, Ruan LL, Chen T, Hu RG (2007) CO2 fluxes from red soil under land use types in mid-subtropical. China Environ Sci 28:1607–1613 (in Chinese)Google Scholar
  20. Hatano R, Nakahara O, Kawahara S, Kitamura S, Koide T (2007) Greenhouse gas budget in a larch forest with low atmospheric N deposition in Hokkaido, Northern Japan. Eurasian J For Res 10:71–77Google Scholar
  21. Heenan DP (1995) Effects of broad-leaf crops and their sowing time on subsequent wheat production. Field Crops Res 43:19–29. doi: 10.1016/0378-4290(95)00033-M CrossRefGoogle Scholar
  22. IPCC (2000) Intergrovermental Panel on Climate Change. Land use, land use change and forestry. A special report for IPCC. Cambridge University Press, UKGoogle Scholar
  23. Johansson M, Pell M, Stenstrom J (1998) Kinetics of substrate induced respiration (SIR) and denitrification: application to a soil amended with silver. Ambio 27:40–44Google Scholar
  24. Jussy JH, Colin-Belgrand M, Dambrine É, Ranger J, Zeller B, Bienaimé S (2004) N deposition, N transformation and N leaching in acid forest soils. Biogeochemistry 69:241–262. doi: 10.1023/B:BIOG.0000031050.13663.82 CrossRefGoogle Scholar
  25. Kang BT, Wilson GF, Siokens L (1987) The development of alley cropping as a promising agroforestry technology. In: Steppler HA, Nair PNK (eds) Agroforestry, a decade of development. ICRAF, Nairobi, pp 227–243Google Scholar
  26. Kaur B, Gupta SR, Singh G (2000) Soil carbon, microbial activity and nitrogen availability in agroforestry systems on moderately alkaline soils in northern India. Appl Soil Ecol 15:283–294. doi: 10.1016/S0929-1393(00)00079-2 CrossRefGoogle Scholar
  27. Kern JS, John MG (1993) Conservation tillage impacts on national soils and atmosphere carbon levels. Soil Sci Soc Am J 57:200–210Google Scholar
  28. Kettunen R, Saarnio S, Martikainen PJ, Silvola J (2007) Can a mixed stand of N2-fixing and non-fixing plants restrict N2O emissions with increasing CO2 concentration? Soil Biol Biochem 39:2538–2546. doi: 10.1016/j.soilbio.2007.04.023 CrossRefGoogle Scholar
  29. Lee KH, Jose S (2003) Soil respiration and microbial biomass in a pecan-cotton alley cropping system in Southern USA. Agroforest Syst 58:45–54. doi: 10.1023/A:1025404019211 CrossRefGoogle Scholar
  30. Mackenzie AF, Fan MX, Acdrin F (1997) Nitrous oxide emission in three years as affected by tillage, corn-soybean-alfalfa rotations and nitrogen fertilization. Can J Soil Sci 77:145–152Google Scholar
  31. Malhi SS, Lemke R, Wang ZH, Chhabra Baldev S (2006) Tillage, nitrogen and crop residue effect on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil Tillage Res 90:171–183. doi: 10.1016/j.still.2005.09.001 CrossRefGoogle Scholar
  32. Maston PA, Vitousek PM (1990) Ecosystem approach to a global nitrous oxide budget. Bioscience 40:667–672. doi: 10.2307/1311434 CrossRefGoogle Scholar
  33. Maston PA, Vitousck PM, Schimel DS (1989) Regional extrapolation of trace gas flux based on soils and ecosystems. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Wiley, New York, pp 97–108Google Scholar
  34. Mayer J, Buegger F, Jensen ES, Schloter M, Heß J (2003) Residual nitrogen contribution from grain legumes to succeeding wheat and rape and related microbial process. Plant Soil 255:541–554. doi: 10.1023/A:1026081015076 CrossRefGoogle Scholar
  35. McKenny DJ, Wang SW, Drury CF, Findlay WI (1993) Denitrification and mineralization in soil amended with legume, grass and corn residues. Soil Sci Soc Am J 57:1013–1020Google Scholar
  36. Metay A, Oliver R, Scopel E, Douzet JM, Moreira JAA, Maraux F et al (2007) N2O and CH4 emissions from soils under conventional and no-till management practices in Goiania (Cerrados, Brazil). Geoderma 141:78–88. doi: 10.1016/j.geoderma.2007.05.010 CrossRefGoogle Scholar
  37. Millar N (2002) The effect of improved fallow residue quality on nitrous oxide emissions from tropical soils. Doctoral Thesis, University of LondonGoogle Scholar
  38. Millar N, Ndufa JK, Cadisch G, Baggs EM (2004) Nitrous oxide emissions following incorporation of improved fallow residues in the humid tropics. Global Biogeochem Cycles 18:GB1032. doi: 10.1029/2003GB002114 CrossRefGoogle Scholar
  39. Moiser AR, Kroeze C, Nevison C, Oenema O, Seitzinger SP, Van Cleemput O (1998) Closing the global N2O budget: nitrous oxide emission through the agricultural nitrogen cycle. OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology. Nutr Cycl Agroecosyst 52:225–248. doi: 10.1023/A:1009740530221 CrossRefGoogle Scholar
  40. Nair PKR (1993) An introduction to agroforestry. Kluwer Academic Publisher, Dordrecht, pp 123–140Google Scholar
  41. Novoa R, Tejeda HR (2006) Evaluation of the N2O emissions from N in plant residues as affected by environmental and management factors. Nutr Cycl Agroecosyst 75:29–46. doi: 10.1007/s10705-006-9009-y CrossRefGoogle Scholar
  42. Oorts K, Merckx R, Gréhan E, Labreuche J, Nicolardot B (2007) Determinants of annual fluxes of CO2 and N2O in long-term no-tillage and conventional tillage systems in northern France. Soil Tillage Res 95:133–148. doi: 10.1016/j.still.2006.12.002 CrossRefGoogle Scholar
  43. Ordóñez R, Rodríguez A, Carbonell R, González P, Perea F (2007) Dynamics of residue decomposition in the field in a dryland rotation under Mediterranean climate conditions in southern Spain. Nutr Cycl Agroecosyst 79:243–253. doi: 10.1007/s10705-007-9111-9 CrossRefGoogle Scholar
  44. Palm CA, Alegre JC, Arevalo L, Mutuo PK, Moiser AR, Coe R (2002) Nitrous oxide and methane fluxes in six different land use systems in the Peruvian Amazon. Global Biogeochem Cycles 16:1073–1085. doi: 10.1029/2001GB001855 CrossRefGoogle Scholar
  45. Pinto M, Mertino P, Del Prado A, Estavillo JM, Yamulki S, Gebauer G et al (2004) Increased emissions of nitric oxide and nitrous oxide following tillage of a perennial pasture. Nutr Cycl Agroecosyst 70:13–22. doi: 10.1023/B:FRES.0000049357.79307.23 CrossRefGoogle Scholar
  46. Postma-Blaauw MB, Bloem J, Faber JH, Van Groenigen JW, De Goede RGM, Brussaard L (2006) Earthworm species composition affects the soil bacterial community and net nitrogen mineralization. Pedobiogia 50:243–256. doi: 10.1016/j.pedobi.2006.02.001 CrossRefGoogle Scholar
  47. Raison RJ, Connell MJ, Khanna PK (1987) Methodology for studying fluxes of soil mineral-N in situ. Soil Biol Biochem 19:521–530. doi: 10.1016/0038-0717(87)90094-0 CrossRefGoogle Scholar
  48. Rizhiya E, Bertora C, van Vliet PCJ, Kuikman PJ, Faber JH, van Groenigen JW (2007) Earthworm activity as a determinant for N2O emission from crop residue. Soil Biol Biochem 39:2058–2069. doi: 10.1016/j.soilbio.2007.03.008 CrossRefGoogle Scholar
  49. Rochette P, Angers DA, Bélanger G, Chantigny MH, Prévost D, Lévesque G (2004) Emissions of N2O from alfalfa and soybean crops in Eastern Canada. Soil Sci Soc Am J 68:493–506Google Scholar
  50. Saggar S, Hedley CB, Giltrap DL, Tate K, Lambie S, Li C (2004) Nitrous oxide from grazed pastures. Supersoil 2004: 3rd Australian New Zealand soils conferences, 5–9 December 2004. University of Sydney, AustraliaGoogle Scholar
  51. Seneviratne G (2000) Litter quality and nitrogen release in tropical agriculture: a synthesis. Biol Fertil Soils 31:60–64. doi: 10.1007/s003740050624 CrossRefGoogle Scholar
  52. Shah Z, Shah SH, Peoples MB, Schwenke GD, Herridge DF (2003) Crop residue and fertilizer N effects on nitrogen fixation and yields of legume-cereal rotations and soil organic fertility. Field Crops Res 83:1–11. doi: 10.1016/S0378-4290(03)00005-4 CrossRefGoogle Scholar
  53. Shrestha BM, Sitaula BK, Singh BR, Bajracharya RM (2004) Fluxes of CO2 and CH4 in soil profiles of a mountainous watershed of Nepal as influenced by land use, temperature, moisture and substrate addition. Nutr Cycl Agroecosyst 68:55–164. doi: 10.1023/B:FRES.0000019044.52811.11 CrossRefGoogle Scholar
  54. Smith KA, Ball T, Cenen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 54:779–791. doi: 10.1046/j.1351-0754.2003.0567.x CrossRefGoogle Scholar
  55. Soil Survey Staff (1999) Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys, 2nd edn. USDA, WashingtonGoogle Scholar
  56. Sun H, Tang Y, Xie JS (2008) Contour hedgerow intercropping in the mountains of China: a review. Agroforest Syst 73:65–76. doi: 10.1007/s10457-008-9113-x CrossRefGoogle Scholar
  57. Swift MJ, Izac AMN, Van Noordwijk M (2004) Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions. Agric Ecosyst Environ 104:113–134. doi: 10.1016/j.agee.2004.01.013 CrossRefGoogle Scholar
  58. Tang Y (2000) Manual on contour hedgerow intercropping technology. ICIMOD, Katmandu, 31 ppGoogle Scholar
  59. Tang Y, Zhang YZ, Xie JS, Sun H (2003) Incorporation of mulberry in contour hedgerows to increase overall benefits: a case study from Ningnan county, Sichuan province, China. Agroforest Syst 76:775–785Google Scholar
  60. Van Groigen JW, Vethof GL, Van der Bolt FJE, Vos A, Kuikman PJ (2005) Seasonal variation in N2O emissions from urine patches: effects of urine concentration, soil compaction and dung. Plant Soil 273:15–27. doi: 10.1007/s11104-004-6261-2 CrossRefGoogle Scholar
  61. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass Carbon. Soil Biol Biochem 19:703–707. doi: 10.1016/0038-0717(87)90052-6 CrossRefGoogle Scholar
  62. Varennes AD, Torres MO, Cunha-Queda C, Goss MJ, Carranca C (2007) Nitrogen conservation in soil and crop residues as affected by crop rotation and soil disturbance under Mediterranean conditions. Biol Fertil Soils 44:49–58. doi: 10.1007/s00374-007-0177-y CrossRefGoogle Scholar
  63. Vellinge TV, Van den Pol-van Dasselaar A, Kuikman PJ (2004) The impact of grassland ploughing on CO2 and N2O emissions in the Netherlands. Nutr Cycl Agroecosyst 70:33–45. doi: 10.1023/B:FRES.0000045981.56547.db CrossRefGoogle Scholar
  64. Velthof GL, Kuikman P, Oenema O (2002) Nitrous oxide emission from soils amended with crop residues. Nutr Cycl Agroecosyst 62:249–261. doi: 10.1023/A:1021259107244 CrossRefGoogle Scholar
  65. Verchot LV, Hutabarat L, Hairiah K, van Noordwijk M (2006) Nitrogen availability and soil N2O emissions following conversion of forests to coffee in southern Sumatra. Global Biogeochem Cycles 20:GB4008. doi: 10.1029/2005GB002469 CrossRefGoogle Scholar
  66. Verchot LV, Júnior SB, de Oliveira C, Mutegi JK, Cattânio H, Davidson EA (2008) Fluxes of CH4, CO2, NO and N2O in an improved fallow agroforestry system in eastern Amazonia. Agric Ecosyst Environ 126:113–121. doi: 10.1016/j.agee.2008.01.012 CrossRefGoogle Scholar
  67. Vigil MF, Kissel DE, Smith SJ (1991) Field crop recovery and modeling nitrogen mineralized from labeled sorghum residue. Soil Sci Soc Am J 55:1031–1037CrossRefGoogle Scholar
  68. Vinther FP, Hansen EM, Olesen JE (2004) Effects of plant residues on crop performance, N mineralization and microbial activity including field CO2 and N2O fluxes in unfertilized crop rotations. Nutr Cycl Agroecosyst 70:189–199. doi: 10.1023/B:FRES.0000048477.56417.46 CrossRefGoogle Scholar
  69. Witter E, Kanal A (1998) Characteristics of the soil microbial biomass in soils from a long-term field experiment with different levels of C input. Appl Soil Ecol 10:37–49. doi: 10.1016/S0929-1393(98)00043-2 CrossRefGoogle Scholar
  70. Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation-extraction: a automated procedure. Soil Biol Biochem 22:1167–1169. doi: 10.1016/0038-0717(90)90046-3 CrossRefGoogle Scholar
  71. Yang LF, Cai ZC (2005) The effect of growing soybean (Glycine max. L.) on N2O emission from soil. Soil Biol Biochem 37:1205–1209. doi: 10.1016/j.soilbio.2004.08.027 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Z. L. Guo
    • 1
  • C. F. Cai
    • 1
    Email author
  • Z. X. Li
    • 1
  • T. W. Wang
    • 1
  • M. J. Zheng
    • 1
  1. 1.College of Resource and EnvironmentHuazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations