Agroforestry Systems

, Volume 72, Issue 2, pp 103–115 | Cite as

Above- and belowground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation

  • E. L. Dossa
  • E. C. M. Fernandes
  • W. S. Reid
  • K. Ezui
Article

Abstract

Coffee (Coffea canephora var robusta) is grown in Southwestern Togo under shade of native Albizia adianthifolia as a low input cropping system. However, there is no information on carbon and nutrient cycling in these shaded coffee systems. Hence, a study was conducted in a mature coffee plantation in Southwestern Togo to determine carbon and nutrient stocks in shaded versus open-grown coffee systems. Biomass of Albizia trees was predicted by allometry, whereas biomass of coffee bushes was estimated through destructive sampling. Above- and belowground biomass estimates were respectively, 140 Mg ha−1 and 32 Mg ha−1 in the coffee–Albizia association, and 29.7 Mg ha−1 and 18.7 Mg ha−1 in the open-grown system. Albizia trees contributed 87% of total aboveground biomass and 55% of total root biomass in the shaded coffee system. Individual coffee bushes consistently had higher biomass in the open-grown than in the shaded coffee system. Total C stock was 81 Mg ha−1 in the shaded coffee system and only 22.9 Mg ha−1 for coffee grown in the open. Apart from P and Mg, considerable amounts of major nutrients were stored in the shade tree biomass in non-easily recyclable fractions. Plant tissues in the shaded coffee system had higher N concentration, suggesting possible N fixation. Given the potential for competition between the shade trees and coffee for nutrients, particularly in low soil fertility conditions, it is suggested that the shade trees be periodically pruned in order to increase organic matter addition and nutrient return to the soil.

Keywords

Albizia adianthifolia Carbon sequestration Coffea canephora Nutrient cycling Togo 

Notes

Acknowledgements

This study was supported mainly by grants from the Cornell Agroforestry Working Group (CAWG) and the Cornell International Institute for Food, Agriculture and Development (CIIFAD). Additional financial support was obtained from the First Presbyterian Church and the Mario Enaudi travel grant. The institutional collaboration of CRAF (Centre de Recherche Agronomique de la Zone Forestière) in Togo is acknowledged. The authors are grateful to Mr. Komlan Amegbleame for his dedicated assistance in completion of fieldwork; and wish to thank the anonymous reviewers for their constructive comments.

References

  1. Aranguren J, Escalante G, Herrera R (1982) Nitrogen cycle of tropical perennial crops under shade trees. I. Coffee. Plant Soil 67:247–258CrossRefGoogle Scholar
  2. Armson KA (1977) Forest soils: properties and processes. University of Toronto Press, TorontoGoogle Scholar
  3. Arthur MA, Fahey TJ (1992) Biomass and nutrients in an Engelmann spruce – subalpine fir forest in north central Colorado: pools, annual production, and internal cycling. Can J For Res 22:315–325CrossRefGoogle Scholar
  4. Baskerville GL (1972) Use of logarithmic regression in the estimation of plant biomass. Can J For Res 2:49–53CrossRefGoogle Scholar
  5. Beer J (1987) Advantages, disadvantages and desirable characteristics of shade trees for coffee, cacao and tea. Agrofor Syst 5:3–13CrossRefGoogle Scholar
  6. Beer J (1988) Litter production and nutrient cycling in a coffee (Coffea arabica) or cacao (Theobroma cacao) plantations with shade trees. Agrofor Syst 7:103–114CrossRefGoogle Scholar
  7. Brown S, Lugo AE (1982) The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica 14(3):161–187CrossRefGoogle Scholar
  8. Brown S, Gillespie AJR, Lugo AE (1989) Biomass estimation methods for tropical forests with application to forest inventory data. For Sci 35(4):881–902Google Scholar
  9. De Jong HJ, Soto-Pinto L, Montoya-Gomez G, Nelson K, Taylor J, Tipper R (1997) Forestry and agroforestry land-use systems for carbon mitigation: an analysis in Chiapas, Mexico. In: Adger WN, Pettenella D, Whitby M (eds), Climate-change mitigation and European land-use policies. CAB International, Wallingford, pp 269–284Google Scholar
  10. DRDR (1998) La région des Plateaux en chiffres: Direction des Statistiques. Direction Régionale du Développement Rural, région des Plateaux. Atakpamé, TogoGoogle Scholar
  11. Dhyani RC, Tripathi KS (2000) Biomass and production of fine and coarse roots of trees under agrisilvicultural practices in north-east India. Agrofor Syst 50:107–121CrossRefGoogle Scholar
  12. Edoh A (1998) Effets de l’association caféiers-Albizia sur la production du café et les propriétés chimiques des sols dans la région des plateaux. Mémoire de fin d’études agronomiques. ESA, Université du Bénin, Lomé, TogoGoogle Scholar
  13. Escalente EE (1995) Coffee and agroforestry in Venezuela. Agrofor Today 7(3–4):5–7Google Scholar
  14. FAO (1991) World soil resources: an explanatory note on the FAO world soil resources map at 1:25 000 000 scale. Food and Agriculture Organization, Rome, ItalyGoogle Scholar
  15. Fassbender HW, Alpizar L, Heuveldop J, Enriquez G, Folster H (1985) Sistemas agroforestales de café (Coffea arabica) con laurel (Cordia alliodora) y café con poró (Erythrina poeppigiana) en Turrialba, Costa Rica. III. Modelos de la materia organica y los elementos nutritivos. Turrialba 35(4):403–413Google Scholar
  16. Gill RA, Kelly RH, Parton WJ, Day KA, Jackson RB, Morgan JA, Scurlock JMO, Tieszen LL, Castle JV, Ojima DS, Zhang XS (2002) Using simple environmental variables to estimate belowground productivity in grasslands. Global Ecol Biogeogr 11:79–86CrossRefGoogle Scholar
  17. Glover N, Beer J (1986) Nutrient cycling in two traditional Central American agroforestry systems. Agrofor Syst 4:77–87CrossRefGoogle Scholar
  18. Golley FB, McGinnis JT, Clements RG, Child GI, Duever MJ (1975) Mineral cycling in a tropical moist forest ecosystem. The University of Georgia Press, AthensGoogle Scholar
  19. Greenberg R, Bichier P, Cruz-Angon A, Reitsma R (1997) Bird populations in shade and sun coffee plantations in central Guatemala. Conserv Biol 11(2):448–459CrossRefGoogle Scholar
  20. Greenland DJ, Kowal JML (1960) Nutrient content of the moist tropical forest in Ghana. Plant Soil 12(2):154–174CrossRefGoogle Scholar
  21. Heuveldop J, Alpizar L, Fassbender HW, Enriquez G, Folster H (1985) Sistemas agroforestales de café (Coffea arabica) con laurel (Cordia alliodora) y café con poró (Erythrina poeppigiana) en Turrialba, Costa Rica. II. Producción agrícola, maderable y de residuos vegetales. Turrialba 35:347–355Google Scholar
  22. Houghton RA, Unruh JD, Lefebvre PA (1993) Current land cover in the Tropics and its potential for sequestering carbon. Global Biogeochem Cycles 7(2):305–320Google Scholar
  23. Juo ASR, Manu A (1996) Chemical dynamics in slash-and-burn agriculture. Agric Ecosyst Environ 58:49–60CrossRefGoogle Scholar
  24. Klinge H (1975) Root mass estimation in lowland tropical forest of central Amazon, Brazil. III. Nutrients in fine roots from giant humus podzols. Trop Ecol 16:28–38Google Scholar
  25. Kürsten E, Burschel P (1993) CO2-mitigation by agroforestry. Water Air Soil Pollut 70:533–544CrossRefGoogle Scholar
  26. Lafolie F, Bruckler L, Ozier-Lafontaine H, Tournebize R, Mollier A (1999) Modeling soil-root water transport and competition for single and mixed crops. Plant Soil 210:127–143CrossRefGoogle Scholar
  27. Lagemann J, Heuveldop J (1983) Characterization and evaluation of agroforestry systems: the case of Acosta-Puriscal, Costa Rica. Agrofor Syst 1:101–115CrossRefGoogle Scholar
  28. Lamouroux M (1969) Carte pédologique du Togo au 1/1.000.000: Note explicative no 34. Orstom, Lomé, TogoGoogle Scholar
  29. Lehmann J, Cravo MS, Macêdo JLV, Moreira A, Schroth G (2001) Phosphorus management for perennial crops in central Amazonian upland soils. Plant Soil 237:309–319CrossRefGoogle Scholar
  30. Mekonnen K, Buresh RJ, Jama B (1997) Root and inorganic nitrogen distributions in Sesbania fallow, natural fallow and maize fields. Plant Soil 188:319–327CrossRefGoogle Scholar
  31. Minitab Inc. (1994) Minitab reference manual. State College, PAGoogle Scholar
  32. Montes S (1979) Estudios del porcentaje de granos vanos, y el rendimiento en Coffea arabica var. “Caturra Rojo” y “Amarillo” en plantaciones al sol y a la sombra. Ciencia y Téchnica en la Agricultura: Café y Cacao 1(1–2):35–45Google Scholar
  33. Muschler RG (1997) Effects of shading by Erythrina poeppigiana on Coffea arabica cvs. Caturra and cv. Catimor. IICA Miscellaneous Publication. A1/SC-97-05, pp 157–162Google Scholar
  34. Nair PKR (1989) Agroforestry systems in the Tropics. Kluwer Academic. ICRAF, Dordrecht, the NetherlandsGoogle Scholar
  35. Nelson BW, Mesquita R, Pereira JLG, de Souza SGA, Batista GT, Couto B (1999) Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. For Ecol Manage 117:149–167CrossRefGoogle Scholar
  36. Nye PH (1961) Organic and nutrient cycles under a moist tropical forest. Plant Soil 13:333–346CrossRefGoogle Scholar
  37. Nye PH, Greenland DJ (1960) The soil under shifting cultivation. Commonwealth Bureau of Soils, HaperdenGoogle Scholar
  38. Nygren P (1995) Carbon and nitrogen dynamics in Erythrina poeppigiana (Leguminosae: phaseoleae) trees managed by periodic prunings. Ph.D. Thesis, University of HelsinkiGoogle Scholar
  39. Oelbermann M, Voroney PP, Kass DCL, Schlonvoigt AM (2005) Above- and below-ground carbon inputs in 19-, 10- and 4-year-old Costa Rican Alley cropping systems. Agric Ecosyst Environ 105:163–172CrossRefGoogle Scholar
  40. Overman JPM, Witte HJL, Saldarriaga JG (1994) Evaluation of regression models for above-ground biomass determination in Amazon rainforest. J Trop Ecol 10:207–218CrossRefGoogle Scholar
  41. Peeters LYK, Soto-Pinto L, Perales H, Montoya G, Ishiki M (2003) Coffee production, timber, and firewood in traditional and Inga-shaded plantations in Southern Mexico. Agric Ecosyst Environ 95:481–493CrossRefGoogle Scholar
  42. Perfecto I, Rice R, Greenberg R, van der Voort ME (1996) Shade coffee: a disappearing refuge for biodiversity. BioScience 46:598–608CrossRefGoogle Scholar
  43. Schaller M, Schroth G, Beer J, Jimenez F (2003) Species and site characteristics that permit the association of fast-growing trees with crops: the case of Eucalyptus deglupta as coffee shade in Costa Rica. For Ecol Manage 175:206–215CrossRefGoogle Scholar
  44. Spangenberg A, Grimm U, Sepada da Silva JR, Folster H (1996) Nutrient store and export rates of Eucalyptus urograndis plantations in eastern Amazonia (Jari). For Ecol Manage 80:225–234CrossRefGoogle Scholar
  45. Van Kanten R, Schroth G, Beer J, Jiménez F (2005) Fine-root dynamics of coffee in association with two shade trees in Costa Rica. Agrofor Syst 63:247–261CrossRefGoogle Scholar
  46. Vitousek PM, Sanford Jr RL (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167CrossRefGoogle Scholar
  47. Young A (1987) Soil productivity, soil conservation and land evaluation. Agrofor Syst 5:277–292CrossRefGoogle Scholar
  48. Young A (1989) Agroforestry for soil conservation. CAB International, WallingfordGoogle Scholar
  49. Wester J, Hogberg P (1989) New nodulating legume tree species from Guinea-Bissau, West Africa. For Ecol Manage 29:311–314CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • E. L. Dossa
    • 1
    • 3
  • E. C. M. Fernandes
    • 1
    • 4
  • W. S. Reid
    • 1
  • K. Ezui
    • 2
  1. 1.Department of Crop and Soil SciencesCornell UniversityIthacaUSA
  2. 2.ESAUniversité du BéninLomeTogo
  3. 3.Department of Soil and Crop ScienceOregon State UniversityCorvallisUSA
  4. 4.ESSD-ARDThe World BankWashingtonUSA

Personalised recommendations