Agroforestry Systems

, Volume 66, Issue 3, pp 231–242 | Cite as

Biomass Production and Chemical Composition of Moringa oleifera under Different Management Regimes in Nicaragua

  • Nadir Reyes Sánchez
  • Stig Ledin
  • Inger LedinEmail author


The effects of different planting densities (250,000, 500,000 and 750,000 plants ha−1) and cutting frequencies (45, 60 and 75 days) on the biomass production and chemical composition of Moringa oleifera was studied in a completely randomised split plot design with four blocks, in Managua, Nicaragua, located geographically at 12°08′15′′ N and 86°09′36′′ E. The 75 day cutting frequency produced the highest fresh matter yield, 100.7 and 57.4 Mg ha−1 year−1, and dry matter (DM) yield, 24.7 and 10.4 Mg ha−1 year−1, during the first and second year, respectively. All planting densities produced the highest DM yield at 75 day cutting frequency. In the first year, the density of 750,000 plants ha−1 produced the highest fresh matter yield, 88.0 Mg ha−1 and highest DM yield, 18.9 Mg ha−1, but in the second year the density of 500,000 plants ha−1 gave the highest yields, 46.2 Mg ha−1 and 8.1 Mg ha−1, respectively. During the first year, DM (22.8%), neutral detergent fibre (NDF) (30.8%) and ash (9.14%) contents were highest and in vitro DM digestibility (IVDMD) (68.2%) was lowest in the longest cutting interval, while contents of crude protein (CP) (22.8%) and acid detergent fibre (ADF) (22.8%) were not affected significantly by cutting frequency. In the second year, DM and CP contents and IVDMD were not significantly affected by cutting frequency, whereas NDF, ADF and ash contents were lowest in the 60 day cutting frequency. Planting density had no significant effect on chemical composition or IVDMD. These data suggest that Moringa forage could be an interesting protein supplement for ruminants.

Key words

Cutting frequency Forage production Nutritive value Planting density Ruminant feed 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Masri, M.R. 2003An in vitro evaluation of some unconventional ruminant feeds in terms of the organic matter digestibility, energy and microbial biomassTrop. Anim. Health Prod.35155167CrossRefPubMedGoogle Scholar
  2. Aregheore, E.M. 2002Intake and digestibility of Moringa oleifera-batiki grass mixtures for growing goatsSmall Rum. Res.462328Google Scholar
  3. Assefa, G. 1998Biomass yieldbotanical fractions and quality of tagasaste(Chamaecytisus palmensis) as affected by harvesting interval in the highlands of EthiopiaAgrofor. Syst.421323CrossRefGoogle Scholar
  4. Ball, R.A., Purcell, L.C., Vories, E.D. 2000Short-season soybean yield compensation in response to population and water regimeCrop Sci.4010701078Google Scholar
  5. Benavides J.E. 1994. La Investigación en árboles Forrajeros. In: árboles y Arbustos Forrajeros en América Central. CATIETurrialbaCR, 1: 3–28.Google Scholar
  6. Catchpoole, D.W., Blair, G. 1990Forage tree legumes. I. Productivity and N economy of Leucaena, Gliricidia, Calliandra, Sesbania and Tree/Green Panic MixturesAust. J. Agric. Res.41521530Google Scholar
  7. Duke J.A. 1983. Handbook of energy crops (Moringa oleifera). Center for new crops and plant products. Purdue University, IndianaUS.
  8. Ella, A., Jacobsen, C., Stur, W.W., Blair, G. 1989Effect of plant density and cutting frequency on the productivity of four tree legumesTrop. Grass232834Google Scholar
  9. Foidl N., Mayorga L. and Vásquez W. 1999. Utilización del Marango (Moringa oleifera) como forraje fresco para el ganado. Conferencia Electrónica de la FAO sobre Agroforestería para la Producción Animal en América Latina. htpp:// Scholar
  10. Foidl N., Makkar H.P.S. and Becker K. 2001. The potential of Moringa oleifera for agricultural and industrial uses. In: Proceedings of International Workshop What development potential for Moringa products? Oct 29th to Nov 2nd. Dar Es SalaamTanzania.
  11. Goering, H.K., Soest, P.J. 1970Forage Fibre Analysis (Apparatus, Reagents, Procedures and Some Applications). Agric. HandbookARS, USDAWashington, DCGoogle Scholar
  12. INTER2003Informe Meteorológico Estación Aeropuerto Internacional “Augusto Cesar Sandino”, Código 69027Las MercedesManaguaNicaraguaGoogle Scholar
  13. Kass, M., Rodriguez, G. 1993Evaluacion Nutricional de AlimentosCATIETurrialbaCosta RicaGoogle Scholar
  14. Knoop, W.T., Walker, B.H. 1985Interactions of woody and herbaceous vegetation in a Southern African savannaJ. Ecol.73235253Google Scholar
  15. Lukhele, M.S., Ryssen, J.B.J. 2003The chemical composition and potential nutritive value of the foliage of four subtropical tree species in southern Africa for ruminantsS. Afr. J. Anim. Sci.33132141Google Scholar
  16. Makkar, H.P.S, Becker, K. 1996Nutritional value and antinutritional components of whole and ethanol extracted Moringa oleifera leavesAnim. Feed Sci. Technol.63211228CrossRefGoogle Scholar
  17. Makkar, H.P.S., Becker, K. 1997Nutrients and antiquality factors in different morphological parts of the Moringa oleifera treeJ. Agric. Sci., Cambridge128311332Google Scholar
  18. Manh L.H., Dung N.N.X. and Xuan V.T. 2003. Biomass production of Moringa oleifera and some legumes in the hilly area of Tinh Bien districtAn Giang province. In Proceedings workshop for sustainable livestock production on local feed resources. SAREC-UAF, HueVietnam2003, 25–27 March.
  19. Minitab1998Minitab User's Guide 2. Data Analysis and Quality tools, Release 12 for Windows, Windows 95 and Windows NTMinitab IncPennsylvaniaUSAGoogle Scholar
  20. Miquilena, E., Ferrer, O.J., Clavero, T. 1995Efecto de tres frecuencias de corte y tres densidades de siembra sobre las fracciones nitrogenadas en hojas y tallos de Gliricidia sepiumRevista Facultad de Agronomía (Luz)12193207Google Scholar
  21. Morton, J.F. 1991The horseradish treeMoringa pterygosperma (Moringaceae)-A boon to arid lands?Econ. Bot.45318333Google Scholar
  22. Nygren, P., Cruz, P. 1998Biomass allocation and nodulation of Gliricidia sepium under two cut and carry forage production regimesAgrofor. Syst.41277292CrossRefGoogle Scholar
  23. Olsen, S.R., Sommers, L.E. 1982PhosphorusKlute, A.Page, A.L. eds. Methods of Soil Analysis. Agronomy No 9. Part 2. Chemical and Microbiological Properties. 2nd edAm. Soc. Agron.Madison, WI403429Google Scholar
  24. Palada, M.C. 1996Moringa (Moringa oleifera Lam.): A versatile tree crop with horticultural potential in the subtropical United StatesHort. Sci.31794797Google Scholar
  25. Paterson, R.T., Karanja, G.M., Nyaata, O.Z., Kariuki, I.W., Roothaert, R.L. 1998A review of tree fodder production and utilization within smallholder agroforestry systems in KenyaAgrofor. Syst.41181199Google Scholar
  26. Toledo J.M. and Schultze-Kraft R. 1982. Metodología para la Evaluación Agronómica de Pastos Tropicales. In: Toledo J.M. (ed.), Manual para la Evaluación Agronómica. Red Internacional de Evaluación de Pastos Tropicales, Centro Internacional de Agricultura Tropical, pp. 91–110. www.ciat. Scholar
  27. Tomar, O.S., Minhas, P.S., Sharma, V.K., Singh, Y.P., Gupta, R.K. 2003Performance of 31 tree species and soils conditions in a plantation established with saline irrigationFor. Ecol. Manag.177333346Google Scholar
  28. USDA 2003. United State Department of AgricultureNatural Resources Conservation Service2003. National Soil Survey Handbook, title 430-VI, NSSH Part 622 (Exhibit 2) [Online] Available:
  29. Ventura, J.C., Pulgar, R. 1997Efecto de la densidad de siembra y frecuencia de corte sobre los componentes de la producción y follaje de yuca Manihot esculentaCrantzRevista de Agronomía (Luz)7229243Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Nadir Reyes Sánchez
    • 1
  • Stig Ledin
    • 2
  • Inger Ledin
    • 3
    Email author
  1. 1.Faculty of Animal ScienceUniversidad Nacional AgrariaManaguaNicaragua
  2. 2.Department of Soil SciencesSwedish University of Agricultural SciencesUppsalaSweden
  3. 3.Department of Animal Nutrition and ManagementSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations