Agroforestry Systems

, Volume 67, Issue 3, pp 203–213

Litter dynamics of six multipurpose trees in a homegarden in Southern Kerala, India

Article

Abstract

Multipurpose trees, the integral components of homegardens, contribute significantly to the closed nutrient cycling processes and sustainability of the ecosystem. Although, the litter production and probable nutrient returns via litter in homegardens have been documented, quantification and characterization of the decomposition and bioelement release from the litter have received relatively little scientific attention. The objective of the present study is to explore the litter dynamics of six locally important multipurpose trees (Mangifera indica L., Artocarpus heterophyllus Lamk., Anacardium occidentale L., Ailanthus triphysa Dennst., Artocarpus hirsutus L. and Swietenia macrophylla L.), in an agroforestry homegarden in Southern Kerala, India. Litterfall and nutrient additions in the six species ranged from 383 to 868 g m−2 yr−1, nitrogen, 6.4 to 8.8, phosphorus, 0.17 to 0.42 and potassium, 1.1 to 2.8 g m−2 yr−1. The annual litter output in the homegarden was 425 kg with A. hirsutus, M. indica, A. heterophyllus and A. occidentale recording significantly higher litter and nutrient additions. Leaf litter decay studies revealed A. heterophyllus and A. occidentale to be the most labile litter species and S. macrophylla the most recalcitrant. The decay rate coefficients varied significantly among the species. Foliage decomposition rates related to the initial chemical composition of the litter revealed best correlation with lignin. NPK release was almost complete by the end of decay in all species inspite of the initial phases of accumulation observed for nitrogen and phosphorus. Two-way analysis of variance test revealed significant differences in the contents of the three elements as a function of species and time elapsed. Macronutrients were released in the order K>N/P. The higher rates of decay and nutrient turnover in M. indica, A. heterophyllus and A. occidentale foliage indicated the potential of using these species’ litter as nutrient inputs in agriculture while A. triphysa, A. hirsutus and S. macrophylla perform better as organic mulches taking a longer time for decay and hence nutrient release.

Keyword

Decomposition Half-life Immobilization Lignin Nutrient dynamics Persistence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.M., Ingram, J.S.I. 1989Tropical Soil Biology and Fertility: A Handbook of MethodsCAB InternationalOxon, UK171Google Scholar
  2. Berg, B., Wessen, B., Ekbohm, G. 1982Nitrogen level and lignin decomposition in Scots pine needlesOikos38291296Google Scholar
  3. Berg B., McClaugherty C. and Johansson M.B. 1992. Litter mass loss rates in late stages of decomposition at some climatically and nutritionally different pine sites: a study on the effects of climate change. Dept. of Forest Ecology and Forest Soils, Swedish University of Agricultural Sciences, Report No. R 67.Google Scholar
  4. Bockheim, J.G., Jepsen, E.A., Heisey, D.M. 1991Nutrient dynamics in decomposing leaf litter of four tree species on a sandy soil in north western WisconsinCan. J. For. Res.21803812Google Scholar
  5. Gallardo, A., Merino, J. 1993Leaf decomposition of two Mediterranean ecosystems of South West Spain: Influence of substrate qualityEcology74152161CrossRefGoogle Scholar
  6. George, S.J., Kumar, B.M. 1998Litter dynamics and cumulative soil fertility changes in silvopastural systems of a humid tropical region in Central KeralaIndiaIntl. Tree Crops J.9267282Google Scholar
  7. Jamaludheen, V., Kumar, M.B. 1999Litter of multipurpose trees in KeralaIndia: variations in the amounts, quality, decay rates and release of nutrientsFor. Ecol. Manage.115111CrossRefGoogle Scholar
  8. Kumar, B.M., Nair, P.K.R. 2004The enigma of tropical homegardensAgroforest. Syst.61135152CrossRefGoogle Scholar
  9. Kumar, B.M., Deepu Jose, K. 1992Litter production and decomposition dynamics in moist deciduous forests of western ghats in peninsular IndiaFor. Ecol. Manage.50181201CrossRefGoogle Scholar
  10. Lavelle, P., Blanchart, E., Martin, A., Martin, S., Spain, A., Toutain, A., Barois, F., Schaefer, R. 1993A hierarchial model for decomposition in terrestrial systems: application to soils of humid tropicsBiotropica25130150CrossRefGoogle Scholar
  11. Mafongoya, P.L., Giller, K.E., Palm, C.A. 1998Decomposition and nitrogen release pattern of tree prunings and litterAgroforest. Syst.387797CrossRefGoogle Scholar
  12. Mathew Happy, John J. and Nair M.A. 1996. Dynamics of an agroforestry homegarden in the humid tropics- a case study from Southern Kerala. In: Proc. Of the Eighth Kerala Science Congress, PalakadKerala pp.208.Google Scholar
  13. Nair M.A., Abraham J., John J. and Sanjeev V. 1996. Biomass productions and nutrient cycling for sustainability in agroforestry homegardens in Kerala –a case study. In: Proc. Of National Seminar on Organic Farming and Substantial Agriculture. UAS, Bangalorepp. 19–20.Google Scholar
  14. Okeke, A.I., Omaliko, C.P.E. 1991Nutrient accretions to the soil via litterfall and throughfall in Acioa barteri stands at OzalaNigeriaAgroforest. Syst.16223229CrossRefGoogle Scholar
  15. Okeke, A.I., Omaliko, C.P.E. 1992Leaf litter decomposition and carbon dioxide evolution of some agroforestry fallow species in southern NigeriaFor. Ecol. Manage.50103116CrossRefGoogle Scholar
  16. Palm, C.A., Sanchez, P.A. 1990Decomposition and nutrient release patterns of the leaves of three tropical legumesBiotropica22330338CrossRefGoogle Scholar
  17. Sadasivam, S., Manickam, A. 1992Biochemical Methods for Agricultural SciencesWiley Eastern LimitedNew Delhi192196Google Scholar
  18. Salamanca Eri, F., Kancko, N., Katagiri, S. 1998Nutrient dynamics in decomposing forest leaf litter: a comparison of field and laboratory microcosm approachJ. For. Res.39198Google Scholar
  19. Saravanan, A., Kalieswari, R.K., Nambeesan, K.M.R., Sankaralingam, P. 1995Leaf litter accumulation and mineralisation pattern of hilly soilsMadras Agric. J.82184187Google Scholar
  20. Stohlgren, T.J. 1988Litter dynamics in two Sierran mixed conifer forests: litterfall and decomposition rates. II. Nutrient release in decomposing leaf litterCan. J. For. Res.1811271144Google Scholar
  21. Tian, G., Brussaard, L., Kang, B.T. 1995Breakdown of plant residues with contrasting chemical compositions: Effect of earthworms and millipedesSoil Biol. Biochem.27277280CrossRefGoogle Scholar
  22. Tian, G., Olimah, J.A., Adeoye, G.O., Kang, B.T. 2000Regeneration of earthworm populations in a degraded soil by natural and planted fallows under humid tropical conditionsSoil Sci. Soc. Am. J.64222228CrossRefGoogle Scholar
  23. Torquebiau, E. 1992Are tropical agroforestry systems sustainable?Agric. Ecosyst. Environ.41189207CrossRefGoogle Scholar
  24. Toky, O.P., Singh, V. 1993Litter dynamics in short rotation high density tree plantations in an arid region of IndiaAgric. Ecosyst. Environ.45129145CrossRefGoogle Scholar
  25. White, D.L., Haines, B.L., Boring, L.R. 1988Litter decomposition in southern Appalachian black locust and pine-hardwood stands: litter quality and nitrogen dynamicsCan. J. For. Res.185463Google Scholar
  26. Young A. 1997. Agroforestry for Soil Management. 2nd edn. CAB International and ICRAF, pp. 47–109.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Krishi Vigyan KendraSadanandapuram, Kottarakkara, KollamIndia
  2. 2.Kerala Agricultural UniversityVellanikkara, ThrissurIndia

Personalised recommendations